平成27年度林野庁委託事業

CLT等新たな製品・技術の開発・普及事業 (住宅等における新たな製品・技術開発事業) のうち

CLT住性能向上研究開発事業報告書

平成28年3月

特定非営利活動法人 建築技術支援協会

目 次	
第1章	事業概要
1.1	事業名 ・・・・・・・・・・・・・・・・・・・・1
1.2	背景と事業目的 ・・・・・・・・・・・・・・・・・・1
1.3	事業実施内容 ・・・・・・・・・・・・・・・・・・・・1
	1.3.1 界壁・床遮音性能の検討
	1.3.2 歩行振動性能の検討
	1.3.3 断熱性能の検討
1.4	推進組織 ・・・・・・・・・・・・・・・・・・・・2
	1.4.1 「CLT 住性能向上研究開発委員会」
	1.4.2~3項目ごとのワーキング・グループ(WG)における事業の実践
1.5	実施期間 · · · · · · · · · · · · · · · · · · ·
第2章	遮音性能
2.0	目的 ・・・・・・・・・・・・・・・・・・・・・3
2.1	界壁の遮音性能 ・・・・・・・・・・・・・・・・・・・4
	2.1.1 界壁遮音性能の試験体
	2.1.2 界壁遮音性能の試験方法
	2.1.3 試験実施場所
	2.1.4 試験実施日
	2.1.5 界壁遮音性能の試験結果
2.2	床版の遮音性能(床衝撃音遮断性能、空気音遮断性能) ・・・・・12
	2.2.1 床版遮音性能の試験体
	2.2.2 床版遮音性能の試験方法
	2.2.3 試験実施場所
	2.2.4 試験実施日
	2.2.5 床版遮音性能の試験結果
2.3	実物件の測定事例データ集・・・・・・・・・・・・・・25
2.4	遮音性能のまとめ、今後の課題 ・・・・・・・・・・26
別図	
遮音	デデータシート ・・・・・・・・・・・・・・・・・・61
第3章	歩行振動
3.0	目的 ・・・・・・・・・・・・・・・・・・・・・100
3.1	実物件の測定:北見セミナーハウス歩行振動試験 ・・・・・・・102
	3.1.1 測定目的
	3.1.2 測定概要
	3.1.3 測定計画
	3.1.4 測定結果

	3.1.5	まとめ
	3.1.6	今後の方針
3.2	試験係	本での再現試験:森林総合研究所・・・・・・・・・・114
	3.2.1	目的
	3.2.2	実験場所
	3.2.3	実験の日程
	3.2.4	試験体
	3.2.5	試験方法
	3.2.6	試験結果
	3.2.7	考察
3.3	シミ	ュレーション解析 ・・・・・・・・・・・・・・・130
	3.3.1	目的
	3.3.2	解析概要
	3.3.3	解析結果
	3.3.4	結果考察
	3.3.5	今後の課題
3.4	今後の	つ課題 ・・・・・・・・・・・・・・・・・・132
資	 斗編	$\cdots \cdots $
第4章	温熱環	境
4.0	温熱理	環境の検討 ・・・・・・・・・・・・・・・・・・・159
4.1	断熱化	土様の検討 ・・・・・・・・・・・・・・・・・・・166
	4.1.1	住宅における各部位の仕様ごとに必要な断熱性能を試算 (1)
	4.1.2	住宅における各部位の仕様ごとに必要な断熱性能の試算 (2)
	4.1.3	非住宅における H25 省エネ基準に適合する CLT 建築物の外皮性能の検討
	4.1.4	表面結露対策の検討
	4.1.5	内部結露対策の検討
4.2	CLT	建築物の温熱性能把握 ・・・・・・・・・・・・・218
	4.2.1	真庭共同住宅
	4.2.2	つくば実験棟の外皮性能
	4.2.3	つくば実験棟の結露センサー設置
	4.2.4	実物件の温熱測定内容および情報収集等
4.3	まとる	めと今後の課題 ・・・・・・・・・・・・・・・・・272
	4.3.1	まとめ
	4.3.2	今後の課題
	4.3.3	設計施工時の留意点
第5章	CLT	(直交集成板)の住性能向上開発研究に関する展開・普及について

1章 事業概要

1.1 事業名

「CLT 等新たな製品・技術の開発・普及事業(住宅等における新たな製品・技術開発事業)のうち「CLT 住性能向上研究開発」

1.2 背景と事業目的

CLT を用いた建築物に関する研究や技術開発は急速に進捗している。しかし、既往の検討の中で住環境等の居住性に関わる基礎的な研究は少ない。特に遮音性能や歩行振動性能の確認や、CLT 建築に期待される断熱性能の検証は十分には行われていない。CLT は多様な用途の建物での利用が予測されており、部材として様々な工法における活用も期待され、これら<住性能>の確認や建物用途・立地などを考慮した仕様の準備が急がれる。

本事業ではCLTの遮音性能、歩行振動性能について仕様検討のうえ確認することと、断熱性能については、CLTを用いた戸建住宅・集合住宅・非住宅など建物用途の差異や、建設立地ごとの仕様例を提示する。それによってCLTの性能特性を活かした<CLTらしい快適な建物>の実現に向けての一助となることを目的とする。

1.3 事業実施内容

本事業では、以下に示す3項目に分け実施した。

1.3.1 界壁・床遮音性能の検討

界壁遮音性能は建築基準法ならびに施行令に定められている界壁の遮音性能基準を満たす仕様を検討し、確認する。

床遮音性能は、集合住宅の標準を満たす仕様の開発を当面の目標とする。特に、重量床 衝撃音について、床上の仕様・下部天井の仕様等も含め検討する。

1.3.2 歩行振動性能の検討

実物件による CLT 床版の振動特性を把握する測定を行い、再現性のある振動解析モデルの確立を目指す。また同時に床試験体測定による接合方法や固定度別の相違等の各種パラメータ計測を行い、解析モデルの精度を高める。これらを元に「認知度」や「気になり度」等の居住性評価に設計段階で資する設計資料「スパン表」の作成につなげる。

1.3.3 断熱性能の検討

断熱性能は、戸建住宅・共同住宅・非住宅につき、一般地と寒冷地におけるシミュレーションを行い、必要とする断熱材を他の工法と比較する。また、平成 25 年省エネ基準および「2020 年を見据えた住宅の高断熱化技術開発委員会」(Heat20)で検討中の内容に適合する仕様を見据えて検討する。併せて、CLT 工法の実物件にて、温熱環境の調査およ

び調査項目のデータを収集する。

1.4 推進組織

事業は以下の組織にて実施し、委員会で活動方針の確認と全体取り纏めを行った。

1.4.1 「CLT 住性能向上研究開発委員会」

委員長 有馬孝禮(東京大学名誉教授)

委員 秋元孝之(芝浦工業大学)

委員 田中 学(一般財団法人日本建築総合試験所)

委員 横山 裕(東京工業大学)

協力委員 河合 誠(一般社団法人日本 CLT 協会)

行政 林野庁

オブザーバー 河野友弘 (大和ハウス工業株式会社)

松尾和午 (三井ホームコンポーネント株式会社)

栗原潤一 (株式会社ミサワホーム総合研究所)

1.4.2 3 項目ごとのワーキング・グループ (WG) における事業の実践

(1) 遮音WG

主査:田中 学	委員:加藤富美夫(大東建託㈱)、守時秀明(住友林業㈱)、藤
監事:河野友弘	本八郎(永大産業㈱)、森本知宏(銘建工業㈱)、並木博一(ジ
協力委員:平光厚雄	ャパン建材㈱)、島崎潤悦(吉野石膏㈱)、森則理(大建工業㈱)

(2) 歩行振動WG

主査:横山 裕	委員:三津橋 歩(㈱ミサワホーム総合研究所)、
監事:松尾和午	並木博一 (ジャパン建材(株))
協力委員:杉本健一	
((研)森林総合研究所)	
青木謙治 (東京大学)	

(3) 温熱WG

主查:秋元孝之	委員:木村惇一(キムテック㈱)、渡邉二郎(ジャパン建材㈱)新井貴
監事:栗原潤一	己(ナイス㈱)、片田和也(ミサワホーム㈱)、宮内亨(旭化成建材㈱)、
協力委員:砂川雅彦	柵山秀人(東日本パワーファスニング㈱)、西崎久志(住友林業㈱)、
	安田年一(㈱ハウジング山陽)、佐藤靖彦(協立エアテック㈱)

1.5 実施期間

平成 27 年 9 月 1 日~平成 28 年 3 月 11 日

2章 遮音性能

本章では、CLTを用いた界壁および床版に関する、遮音性能の検討結果を報告する。

2.0 目的

隣戸間の遮音性能は共同住宅等において居住者から最も要求される住環境性能の1つである。 遮音性能が充分に確保されないと、居住者の満足度を著しく低下させることになり、場合により 深刻なクレームにつながる危険性もある。このため、CLTを共同住宅などの界壁や床版の材料と して使用する場合には、事前にその遮音性能を検討し、問題を生じない水準の遮音性能を確保す ることが重要である。

一般論として、壁についても床についても、均一材料で構成される建築部位(面)の遮音性能は、「面密度」(面積当たりの質量,kg/m²)が大きいほど遮音性能も高くなる特性がある。一方、鉄筋コンクリートに比べると CLT は比重が小さく軽いことが特徴といえる。このため、CLT を壁や床に使用する場合には、遮音性能を確保する上では不利になることが懸念され、実用化に向けては慎重な検討が求められる。

しかしながら、CLT を用いた壁や床の遮音性能についての実測事例はこれまでほとんど報告されておらず、遮音性能の実態は把握されていない。また、CLT 単体での遮音性能が不充分な場合には、付加材の施工など何らかの対策をとり、所期の遮音性能を確保すべく改良することが必要となるが、付加材による遮音性能向上の効果に関する知見もほとんど蓄積されていない。

CLT 床版の遮音性能に関するこれまでの取組みとしては、平成 26 年度に(一社)日本 CLT 協会において実施された、「平成 25 年度補正林野庁委託事業『床板として CLT を使用する枠組壁工法建築物の開発』(以下、昨年度事業)」が挙げられる。その中では、CLT 床版単体および付加材による対策仕様の遮音性能を実験室において測定したが、その結果は重量床衝撃音遮断性能が Lr-64~72 の水準であり、日本建築学会遮音性能基準において集合住宅の標準(2 級)とされる「Lr-55等級」の水準には達していなかった。また、CLT 床板を使用した空気音遮断性能試験の結果からは、建築基準法で要求される遮音性能(Rr-40 相当)の水準を CLT 単体の壁で達成するのは極めて困難であることが示唆されていた。

このため、本開発研究では、以下の(1)~(4)を目的として実験室での遮音性能実験などを実施し、その結果に対して検討を加えた。

- (1) CLT 単体による界壁および床版について基本的な遮音性能を把握する。
- (2) CLT を用いた界壁について、建築基準法の遮音基準を満たす対策仕様を開発する。
- (3) CLT を用いた床板について、重量床衝撃音遮断性能が Lr-55 の水準を実現する対策仕様を 開発する。また軽量床衝撃音遮断性能の水準を確認する。
- (4) これまでに建設された CLT 共同住宅について、遮音性能実測データを収集し整理する。

2.1 界壁の遮音性能

建築基準法第30条(長屋又は共同住宅の各戸の界壁)において「隣接する住戸からの日常生活に伴い生ずる音を衛生上支障がないように低減する」ために遮音性能を確保するように定めされており、その技術的基準は建築基準法施行令第22条の3(遮音性能に関する技術的基準)において以下の音響透過損失(表2.1)以上の性能を確保すること、と具体的に定められている。

表 2.1 建築基準法施行令が定める界壁の遮音性能の基準 (下限値)

振動数(単位 Hz)	透過損失(単位 dB)
125	25
500	40
2000	50

このため、共同住宅または長屋の界壁に CLT を使用する場合には、建築基準法第 30 条における「国土交通大臣が定めた構造方法」を具体的に記した昭和 45 年建設省告示第 1827 号(遮音性能を有する長屋又は共同住宅の界壁の構造方法を定める件)(平成 16 年国土交通省告示第 1170 号により改正)に示された仕様とする方法、あるいは、個別の仕様として新たに国土交通大臣の認定を取得して運用する方法、の何れかを採用することが考えられる。しかしながら、同告示の中には CLT 界壁に直接適用できる断面仕様の例示は見られない。したがって、個別仕様として国土交通大臣認定を取得することが必要となる。

そこで、今回の開発研究の中では、まず CLT 単体による壁の遮音性能を実験室測定によって把握することとした。次に、CLT 単体の片面あるいは両面に付加材を施工した時の遮音性能の変化を実験的および理論的に検討し、併せて、コストや施工性も考慮し実現可能性の高い幾つかの界壁仕様を提案することとした。また最終的な目標として、共同住宅または長屋の界壁に使用できる CLT 界壁の仕様案(1~2 案)について、その遮音性能を確認することとした。

2.1.1 界壁遮音性能の試験体

試験体は全8 仕様の界壁 (W4000mm×H2500mm×T150~314mm) である。これら8 仕様の界壁は、いずれも厚さ150mmの CLT パネルをベースとして用いており、その片面または両面に付加材を施工した仕様である。試験体仕様の概要を表 2.2 に示す。

No.	CLT パネル	受音側ふかし壁	音源側ふかし壁
1		なし	
2		LGS + GW + PB12.5mm	なし
3		LGS + GW + PB (12.5mm+9.5mm)	
4	厚 150mm	LGS + GW + PB (12.5mm+9.5mm)	同左
(5)		LGS + PB (12.5mm+9.5mm)	
6		LGS + GW + PB (強化 21mm+硬質 9.5mm)	なし
7		GW + CLT パネル 90mm	/4 C
8		空気層+ CLT パネル 90mm	

表 2.2 界壁遮音性能の試験体仕様の概要

注) LGS:軽量鉄骨下地、GW:グラスウール、PB:せっこうボード

壁試験体①は、厚 150mm の CLT パネル単体による界壁であり、両面とも付加材は何も施工されていない。CLT 単体の遮音性能を把握するためのものである。CLT パネルが小割になると目地部が生じ遮音性能上は弱点になることが考えられる。このため、壁試験体①の製作の際には、施工する各 CLT パネルの 1 枚当たりの幅を約 1000mm として、各 CLT パネルの間および左右両側の外壁想定部位との間に各 2mm ずつの隙間を意図的に設け、この隙間の影響も含めた遮音性能を把握することとした。

壁試験体②~⑥は、壁試験体①をベースとして、その片面または両面に付加材を追加施工した 仕様である。

壁試験体②,③,⑥は、壁試験体①の片面(受音側)に付加材として軽量鉄骨下地を配置した 上にグラスウールを挿入し、せっこうボード貼りとした仕様である。壁試験体②,③,⑥では、 施工されたせっこうボードの厚さが異なる。

壁試験体④は、壁試験体①の両面に壁試験体③(片面に付加材)と同じ付加材を両面に施工した仕様である。

また試験体⑤は、壁試験体③の内部に挿入されたグラスウールを取り去った仕様である。

壁試験体⑦, ⑧は、壁試験体①の片面(受音側)に付加材としてさらに厚 90mm の CLT パネルを 化粧材として施工した仕様であり、中空部へのグラスウール挿入の有無が異なる。

なお、界壁試験体の詳細については、写真 2.1~2.6、別図 2.1~2.10、および別冊「CLT 界壁 の遮音性能試験 報告書」(一般財団法人 日本建築総合試験所)を参照されたい。

2.1.2 界壁遮音性能の試験方法

試験は(一財)日本建築総合試験所(所在地:大阪府吹田市)の第2および第3残響室を用い、 両残響室間の開口に試験体を設置して行った。測定装置の概要を図2.1に示す。

試験方法は、JIS A 1416:2000「実験室における建築部材の空気音遮断性能の測定方法」に基づき、中心周波数100~5000Hzの18帯域1/3オクターブバンドについて音響透過損失の測定を行った。なお、音響透過損失の1/1オクターブ換算値は、試験体間の比較を詳細に行うため、0.1dB単位まで求めた。

2.1.3 試験実施場所

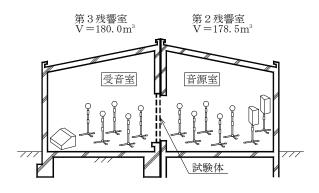
一般財団法人 日本建築総合試験所(所在地:大阪府吹田市藤白台5丁目8番1号) 音響実験棟 第2・第4残響室

2.1.4 試験実施日

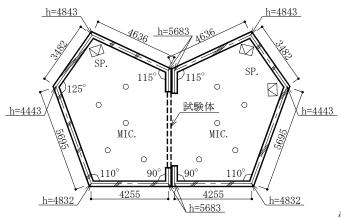
平成 27 年 10 月 5 日~同月 16 日

2.1.5 界壁遮音性能の試験結果

試験結果の比較と一覧を、図 2.2~2.8 に示す。なお、界壁遮音性能の試験結果の詳細については、 別冊「CLT 界壁の遮音性能試験 報告書」(一般財団法人 日本建築総合試験所)を参照されたい。 一連の試験結果および比較から、以下のことがいえる。


- (1) CLT パネル(t=150m)単体の壁について、先ず、パネル間の目地部やパネル四周の隙間からの漏音の影響を調べるため、目地部・隙間の開閉による遮音性能の差異を調べた(図 2.2 参照)。なお、目地部・隙間を閉じる際には、表面に油粘土を密実に付け、シール材施工の代替とした。目地部および四周隙間がすべて開いた状態(①-4)、および、四周隙間を塞ぎパネル間縦目地部だけ開いた状態(①-3)では、500Hz 以上では遮音性能が大幅に低下することが判った。これに対して、目地部および四周隙間ともに音源側だけすべて塞いだ状態(①-2)にすると 500Hz 以上の遮音性能が大幅に向上する。また、音源側・受音側とも塞いだ状態にすれば、音源側片面のみ塞いだ状態よりも遮音性能がさらに 1~3dB 程度向上することが判った。このため、目地部および四周隙間ともに両面とも油粘土で塞いだ状態を「壁試験体①」とし、以降の検討のベースとすることとした。
- (2) 図 2.3 に、CLT パネル(t=150mm)単体の壁(壁試験体①)と遮音界壁の基準性能(Rr-40)との比較を示す。CLT パネル(t=150mm)単体では遮音界壁の基準に達しないことが判った。このため何らかの遮音対策が必要であるが、単純に厚さを増すだけなら 2 倍(t=300mm)以上の厚さにする必要がある。現実的な遮音対策として何らかの付加材を追加するのが有効と考えられる。
- (3) CLT パネル (t=150mm) 単体 (壁試験体①) の測定結果に付いては、他機関 (高知県およびカナダ) などとも比較し、結果が妥当な水準であることを検証した。高知県での測定結果はほぼ同じ 仕様の CLT 試験体であり、200~500Hz 帯域での差異 (主に試験室の特性に起因するものと予想される)を除いて、ほぼ一致する結果であった。また、カナダでの測定結果との差異には、試験体サイズ・樹種・試験室の特性など複数の相違の影響も含まれると推測されるが、ほぼ妥当な差異と考えられる。 (図 2.3 参照)
- (4) 図 2.4 に、軽量鉄骨(軽鉄)下地材を配しグラスウールを挿入した乾式工法のせっこうボード壁(以下「乾式ふかし壁」と呼ぶ)を施工した試験体(壁試験体②、③)の結果を示す。乾式ふかし壁を付加すると、遮音性能が大幅に向上することが判った。PB12.5mm 1 枚まで施工するとRr-45まで2ランク改善し(壁試験体②)、PB12.5mm+9.5mm(No.3-2)にすると更にRr-50まで

改善した(壁試験体③)。壁試験体③であれば、遮音界壁の水準を充分に確保できる。


- (5) 参考として、壁試験体③と同じ PB12.5mm+9.5mm (グラスウール挿入) のふかし壁を CLT 壁の両面に施工する仕様(壁試験体④) についても測定を実施した。その結果、遮音等級は Rr-50 となり、片面施工の壁試験体③と遮音等級は同じであったが、ほとんどの帯域で 5dB 前後の遮音改善が見られた。また今回の壁試験体①~⑧の中では最も遮音性能が高かった。(図 2.5 参照)
- (6) 図 2.6 に、壁試験体③と同じ乾式ふかし壁でグラスウールの挿入を無しにした場合(壁試験体 ⑤)についても測定を実施した。中空部にグラスウールの挿入が無くなると、500Hz 帯域以下の 低い音域で遮音性能が大幅に低下し、遮音等級は Rr-45 となり、遮音界壁の基準値への余裕度も 僅かとなることが判った。(図 2.6 参照)
- (7) 図 2.7 では、せっこうボードの厚さを増し(壁試験体③:12.5+9.5mm→壁試験体⑤:21+9.5mm)、その効果を検証したが、両者にはほとんど差が見られなかった。理論的には面材の面密度が増すと遮音性能も向上する傾向である。今回が異なる測定結果となった原因として、壁試験体③ではせっこうボードが縦貼り施工であるため、目地が少なく音漏れが少なく剛性も確保しやすいのに対して、壁試験体④では軽鉄下地材の間隔の都合でせっこうボードを横貼りにしたため、目地が増えて音漏れが多くなり剛性も低下した影響が出たものと考えられる。
- (8) 図 2.8 に、CLT パネル(t=150mm)単体の壁にさらに CLT パネル(t=90mm)を付加し「両面現し」にする仕様(壁試験体⑦、8)についても遮音測定を行った。その結果、グラスウールを挿入した壁試験体⑦が Rr-45、グラスウール挿入の無い壁試験体®が Rr-40、であった。グラスウールを挿入した壁試験体⑦の仕様であれば、遮音界壁の水準(Rr-40)に対してある程度の余裕をもって性能確保できると考えられる。

以上をまとめると、CLTパネル壁の遮音性能について、以下のようになる。

- ・ CLT パネル壁ではパネル間目地部および四周隙間からの漏音の影響が大きい。シーリング材 など何らかの漏音対策が必須である。
- ・ CLT パネル (t=150mmm) 単体の壁では遮音界壁の基準を満たさない。
- ・ CLT パネル (t=150mm) に軽鉄下地グラスウール挿入せっこうボード壁 (t=12.5+9.5mm) の ふかし壁を施工すると、遮音界壁の基準を余裕をもって達成できる。
- ・ CLT パネル (t=150mm) のグラスウールを挟み込んで更に CLT パネル (t=90mm) を付加した 「両面現し」についても、ある程度の余裕を持って遮音界壁の基準を確保できる。
- 壁試験体①~⑧の仕様と遮音性能の相互関係をまとめると図 2.9 のようになる。

【第2・第3残響室断面図 S:1/200】

【第2・第3残響室平面図 S:1/200】

【音源装置】

【受音装置】

【測定機器】

受音点:音源、受音側とも各5点

図 2.1 壁遮音性能試験 測定装置ブロック図

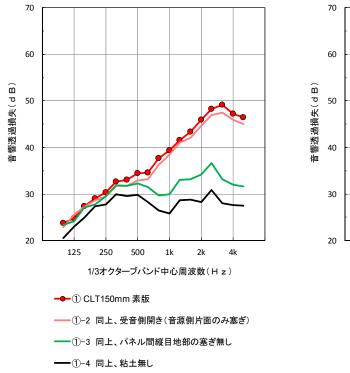


図 2.2 CLT の目地部処理と遮音性能

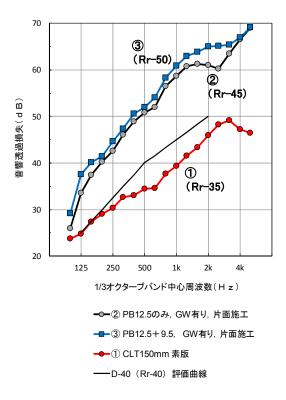


図 2.4 PB 片面 (1 層/2 層, GW 有) の効果

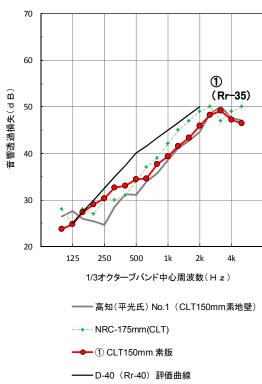


図 2.3 CLT 単体(厚 150mm)の遮音性能

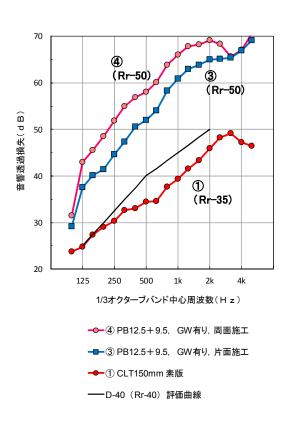


図 2.5 PB の片面施工・両面施工の比較

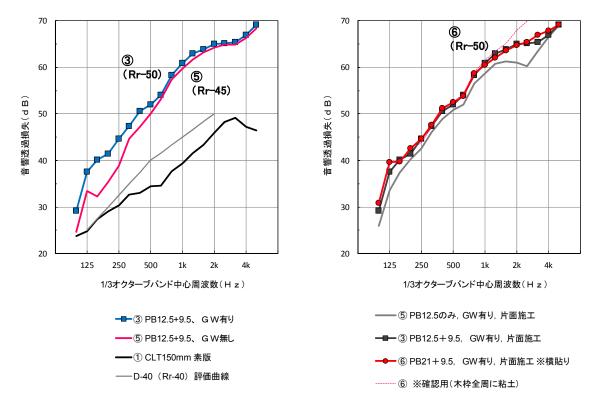


図 2.6 PB 片面施工での GW 有無の比較

図2.7 PB (t21+9.5, GW有) の結果

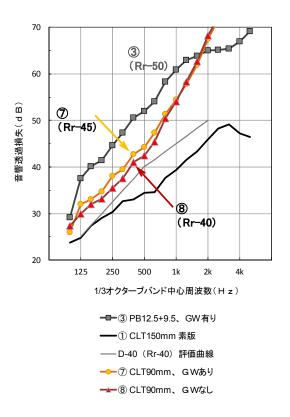


図 2.8 両面 CLT (t150+90, GW 有/無) の結果

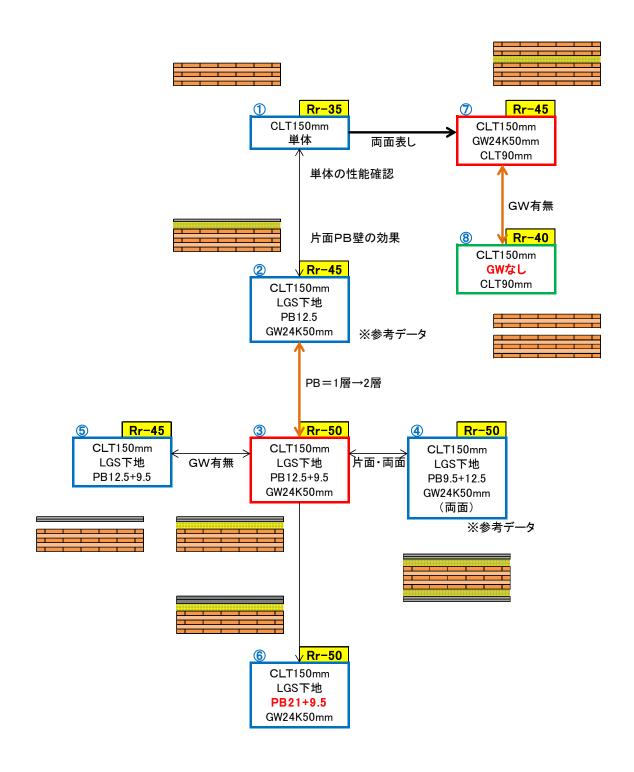


図 2.9 CLT 壁 (試験体①~⑧) の仕様の相互関係・遮音試験結果の比較図

2.2 床版の遮音性能 (床衝撃音遮断性能、空気音遮断性能)

共同住宅の界壁を含む居住空間の床構造の遮音性能については、建築基準法上の規定は無い。しかし、共同住宅においては上階から下階に伝わる歩行音などは特にクレームや居住者トラブルの原因となりやすいため、広く一般的には共同住宅の床構造の遮音性能は一定水準以上の性能が保たれている。勿論、建物の販売価格や分譲・賃貸などの用途によっても遮音性能の水準は異なるが、日本建築学会による「建築物の遮音性能基準」では、集合住宅の居室の隣戸間界床の重量床衝撃音遮断性能の性能水準について、LH-55を「一般的な性能水準」、LH-60を「やむを得ない場合に許容される最低水準」、と定めている。従って、CLT パネルを用いた床構造を共同住宅の界床として使用するためには、「LH-60」以上の重量床衝撃音遮断性能を達成することが当面の必達目標となる。

平成 26 年度に(一社)日本 CLT 協会で実施された平成 25 年度補正林野庁委託事業「床板として CLT を使用する枠組壁工法建築物の開発」(以下、昨年度事業)の中で、床の遮音性能試験についても幾つかの実験を実施した。しかしながら、その結果は LH-55 を満たせなかった。

軽量床衝撃音に関してはカーペットや防音フローリングなど床表面を軟らかくすることで容易に遮音性能が向上できるのに対して、重量床衝撃音に関してはカーペット等の後施工の対策では音の発生または伝達を軽減しにくい特性があり、床構造体施工時の仕様による対策が重要となる。そのため、昨年度事業で実施した仕様をさらに改良し、重量床衝撃音で LH-60 を満たす性能を目指した。また、軽量床衝撃音および空気音遮断性能(音響透過損失)についても、幾つかの現実的な対策仕様および新素材の利用による対策仕様での遮音性能水準を確認することとした。

2.2.1 床版遮音性能の試験体

床版遮音性能の試験は、まず、12 仕様の床版試験体について行った。これらの床版試験体は、いずれも厚さ210mmのCLTパネルをベースとして用いたものであり、天井の有無および床下地材・床仕上げ材の種類などが異なる。また、大きさはW4170mm×L2680mmであり、上下残響室間の開口部(開口面積:約10m²)に設置して、重量床衝撃音遮断性能、軽量床衝撃音遮断性能、空気音遮断性能(音響透過損失)を測定した。

また、CLT パネルへの炭素繊維開繊テープの貼付けによる重量床衝撃音遮断性能への効果を確認するため、CLT 床版(W4000mm×L1000mm×T210mm)を用意し、炭素繊維開繊テープを CLT 床版の両面に貼り付ける前後で、長辺方向の両端を支持した状態での衝撃インピーダンスおよび静的荷重によるたわみ量の測定を行った。

試験体仕様の概要を表 2.3~2.5 および以下に示す。なお、床版遮音性能試験の試験体の詳細については、写真 2.7~2.11、別図 2.11~2.23、および別冊「CLT 床版の遮音性能試験 報告書」(一般財団法人 日本建築総合試験所)を参照されたい。

[床版試験体 (No. 0-1~No. 3-2) の概要]

No. 0-1 は、厚 150mm の CLT パネル単体による床版であり、パネル間目地部はスプライン加工されている。床上側・天井側とも付加材は何も施工されていない。No. 0-2 は、No. 0-1 の床上側にせっこうボードと合板を施工した仕様で、共同住宅等での使用を想定している。

No. $1-1\sim1-5$ は、No. 0-1 の天井側に CLT パネル(t=90mm)を二重天井材として追加したもので、四周の隙間の仕様および天井裏空間への挿入材の有無が異なる。

No. 2-1~2-3 は、No. 0-2 の床上側に乾式二重床を追加したもので、上部構造での制振マットの使用状況(なし、または t=8mm、16mm)が異なる。なお、No. 2-1 で使われた乾式二重床は、鉄筋コンクリート造の集合住宅で広く採用されている普及型の仕様である。

No. 3-1~3-2 は、No. 0-1 または No. 0-2 の床上側に直貼り木質防音フローリング(以下、「防音フローリング」を施工した仕様である。使用した防音フローリングは、鉄筋コンクリート造の集合住宅で広く採用されている遮音性能水準(いわゆる「L45」タイプ)の仕様である。

[炭素繊維開繊テープ貼付け効果検証用の試験体(No.4-1~No.4-2)の概要]

No. 4-1 および No. 4-2 は、炭素繊維開繊テープ貼付けによる重量床衝撃音遮断性能の改善効果を検証するための試験体である。No. 4-1 は、CLT 床版(W 4000mm×L 1000mm×T 210mm)のみによる試験体である。No. 4-2 は、No. 4-1 の両面に炭素繊維開繊テープ(幅 50mm)を全面に接着剤で縦横格子状に貼り付けた試験体である。

表 2.3 床版遮音試験体の仕様の概要

No.	CLT パネル	天井	床下地材	床仕上げ材
0-1				
0-2			せっこうボード 12.5 +構造用合板 12	
1-1		CLTパネル 厚 90		
1-2		グラスウール 24kg/m゚厚50 + CLTパネル厚90		
1-3		CLTパネル 厚 90 (天井下階側に隙間)		
1-4	厚 210	CLTパネル 厚 90 (天井上階側に隙間)		
1-5	(W 4170× L 2680)	制振用砂袋 + CLTパネル 厚 90 (天井上階側に隙間)		
2-1				乾式二重床A (制振マットなし)
2-2			せっこうボード 12.5 +構造用合板 12	乾式二重床B (制振マット8mm)
2-3				乾式二重床C (制振マット16mm)
3-1				サウラー リング
3-2			せっこうボード 12.5 +構造用合板 12	防音フローリング

表 2.4 炭素繊維補強効果検証の試験体の仕様

No.	CLT パネル	炭素繊維開繊テープの有無	
4-1	厚 210	無	
4-1	(W 4000×L 1000)	有	

表 2.5 床版遮音性能の試験体の一覧(断面図、および床上・天井の構成)

試験体	断面図	床上構成	天井構成
0-1			
0-2		合板12+GB12. 5	
1-1			CLTパネル90
1-2			グラスウ−ル50 24kg/m³ CLTパネル90
1–3	空気抜き		CLTパネル90 (下階側に空気抜き)
1-4	空気抜き		CLTパネル90 (上階側に空気抜き)
1–5			制振用砂袋 CLTパネル90 (上階側に空気抜き)
2-1	X X X	フロ−リング +パーティクルボード+支持脚 +合板12+GB12.5	
2-2	X X X	フローリング+制振マット +パーティクルボード+支持脚 +合板12+GB12.5	
2-3	X X X	フローリング+制振マット2層 +パーティクルボード+支持脚 +合板12+GB12.5	
3–1		直貼り防音フローリング (部分敷き)	
3-2		直貼り防音フローリング (部分敷き) +合板12+GB12.5	
4-1			
4-2		炭素繊維開繊テープ (両面格子状貼り)	

註)表内の数値は厚さを示す。(寸法単位:mm)

2.2.2 床版遮音性能の試験方法

試験は(一財)日本建築総合試験所(所在地:大阪府吹田市)の第2および第4残響室を用い、 両残響室間の開口に試験体を設置して行った。

各試験項目の試験方法を以下に述べる。また測定装置ブロック図を図 2.10~2.12 に示す。

2.2.2.1 軽量床衝撃音遮断性能(タッピングマシン)

試験方法は、ISO 10140-3 "Acoustics - Laboratory measurement of sound insulation of building elements - Part 3: Measurement of impact sound insulation" に基づき、標準軽量衝撃源(タッピングマシン)による規準化床衝撃音レベルの測定を行った。なお、測定は中心周波数 $50\sim5000$ Hz の 21 帯域 1/3 オクターブバンドについて行い、その測定結果から中心周波数 $63\sim400$ Hz の 7 帯域 1/1 オクターブバンドの値も算出した。

2.2.2.2 重量床衝撃音遮断性能(タイヤ衝撃源)

試験方法は、ISO 10140-3 "Acoustics - Laboratory measurement of sound insulation of building elements - Part 3: Measurement of impact sound insulation" に準じて、JIS A 1418-2:2000「建築物の床衝撃音遮断性能の測定方法—第2部:標準重量衝撃源による方法」に規定される衝撃力特性(1)の標準重量衝撃源(タイヤ衝撃源)による重量床衝撃音レベルの測定を行った。なお、測定は中心周波数 $20\sim630$ Hz の 15 帯域 1/3 オクターブバンドについて行い、その測定結果から中心周波数 $31.5\sim500$ Hz の 5 帯域 1/1 オクターブバンドの値も算出した。

2.2.2.3 重量床衝撃音遮断性能(ボール衝撃源)

試験方法は、ISO 10140-3 "Acoustics - Laboratory measurement of sound insulation of building elements - Part 3: Measurement of impact sound insulation" に準じて、JIS A 1418-2:2000「建築物の床衝撃音遮断性能の測定方法—第2部:標準重量衝撃源による方法」に規定される衝撃力特性(2)の標準重量衝撃源(ボール衝撃源)による重量床衝撃音レベルの測定を行った。なお、測定は中心周波数 $20\sim630$ Hz の 15 帯域 1/3 オクターブバンドについて行い、その測定結果から中心周波数 $31.5\sim500$ Hz の 5 帯域 1/1 オクターブバンドの値も算出した。

2.2.2.4 空気音遮断性能(音響透過損失)

試験方法は、JIS A 1416:2000「実験室における建築部材の空気音遮断性能の測定方法」に基づき、中心周波数 100~5000Hz の 18 帯域 1/3 オクターブバンドについて音響透過損失の測定を行った。

2.2.2.5 衝撃インピーダンス

試験体に振動加速度ピックアップを固定し、その近傍をインパルスハンマで加振し、加振力および振動速度を測定した。これらの信号をFFT分析器に入力し、衝撃時間内応答インピーダンス、全時間応答インピーダンス、床版の固有振動数の解析を行った。

2.2.2.6 静的荷重によるたわみ

試験体におもり(約 760kg)を中心に載荷し、レーザー変位計を用いて、端部2点と中央部1点の静的載荷時の変位量を測定した。その結果から静的載荷時のたわみ量を算出し比較した。

2.2.3 試験実施場所

一般財団法人 日本建築総合試験所(所在地:大阪府吹田市藤白台5丁目8番1号) 音響実験棟 第2·第4残響室

2.2.4 試験実施日

平成 27 年 11 月 2 日~同年 12 月 25 日

2.2.5 床版遮音性能の試験結果

試験結果の一覧と比較を、表 2.6~2.7 および図 2.13~2.21 に示す。なお、床版遮音性能の試験結果の詳細については、別冊の「CLT 床版の遮音性能試験 報告書」(一般財団法人 日本建築総合試験所)を参照されたい。

一連の試験結果および比較から、以下のことがいえる。

- (1) まず、CLT パネル (t=210mm) 単体 (No. 0-1) 、および床上側をせっこうボード+合板で被覆した仕様 (No. 0-2) の床衝撃音遮断性能の測定結果を、昨年度(平成 26 年度)の試験体の測定結果と比較した。その結果、重量・軽量床衝撃音ともに、遮音性能水準は同等であり周波数特性にも大きな差異は見られなかった。このことから、CLT 床の生産ロットの違いによる床衝撃音遮断性能の差異はほとんど無いと言える。 (図 2.13 および図 2.16)
- (2) また、空気音遮断性能(音響透過損失)についても、CLT パネル(t=210mm)単体(No.0-1)、およびせっこうボード+合板で被覆した仕様(No.0-2)の測定結果を、昨年度(平成26年度)の試験体の測定結果と比較した。その結果、250Hz 帯域より高い周波数域で今年度の試験体のほうが若干遮音性能が高い結果であった。これは、昨年度の遮音試験において試験体四周の木枠と床パネルとの接合部からの若干の漏音が確認されており、その影響の有無の差が表れたものと推測される。その影響を考慮すると、今年度と昨年度の試験結果はほぼ同等であるといえる。(図2.20)
- (3) CLT パネル (t=90mm) を二重天井として使用すると (No. 1-1~1-5)、天井空気層を密閉とした仕様 (No. 1-1) では重量床衝撃音では効果が無く、軽量床衝撃音では 10dB の低減効果がみられた。CLT 二重天井にグラスウールを挿入すると (No. 1-2)、重量床衝撃音の性能はさらに 3dB の改善が見られた。 (図 2. 14 および図 2. 17)
- (4) 天井空気層での圧力上昇による伝搬の影響を防ぐために天井パネル四周に隙間を開けると (No. 1-3 および No. 1-4)、下階側に隙間を設けた場合(No. 1-3)には重量床衝撃音・軽量 床衝撃音ともに遮断性能が逆に大幅に低下してしまうが、上階側に隙間を設けた場合(No. 1-4)には重量床衝撃音の遮断性能が改善し、Lr-60までの高い遮音性能水準に達することが判った。(図 2. 14 および図 2. 17)
- (5) さらに CLT 天井パネルの上に制振用に砂袋を載せると (No. 1-5) 、重量床衝撃音の性能が Lr-60 まで向上する。これは、今回の一連の天井仕様の中では、最も遮音性能が高い結果で ある。 (図 2.14 および図 2.17)
- (6) 乾式二重床を床上に施工した仕様については、通常仕様(No. 2-1)、および、通常仕様に制振マット(8mm、16mm)を追加した仕様(No. 2-2、2-3)の測定を行った。なお、昨年度の試験ではゴム支持脚を固定せず二重床がバウンドした影響で重量床衝撃音遮断性能が低下していた(特に125~250Hz 帯域で音圧レベルが大幅に上昇)と推測されるため、今年度の試験に際しては施工時にゴム支持脚を床面に接着固定した。その結果、今年度の重量床衝撃音の試験結果では二重床のバウンドの影響による性能低下は表れなかった。また、制振マットを厚くし、面密度を高くするのに伴い、重量・軽量・透過損失ともに、遮音性能は次第に

向上することが確認された。最も遮音性能の高い制振マット 16mm の仕様 (No. 2-3) では、 重量 Lr-59、軽量 Lr-64、であった。 (図 2.15、図 2.18、図 2.21)

- (7) 防音フローリングを施工すると (No. 3-1, 3-2) 、軽量床衝撃音遮断性能の性能は Lr-61~58 まで向上した。これは、鉄筋コンクリート床上に施工した場合より低い性能であるが、鉄筋コンクリート版と CLT パネルの素板の性能の差にほぼ対応している。また、ベースとなる CLT パネル素版が異なっても (No. 0-1 と No. 0-2) 、防音フローリングを施工した後の遮音性能はほとんど変わらなかった。これは、防音フローリングが「床表面を軟らかくして遮音性能を向上させる」タイプの床材であるためと推測される。No. 0-2 においては下地材 (PB + 合板) の施工で同様の効果が元々有り、防音フローリングを重ね貼りしても加算した効果までは発揮されないためであると考えられる。 (図 2. 19)
- (8) CLT パネルの両面に炭素繊維開繊テープを貼り付けても(No. 4-1→No. 4-2)、衝撃時間内 応答インピーダンスの変化はほとんどなく、1 次固有振動数の変化も CLT パネルの曲げ剛性 の向上を示すものではなかった。また、静的荷重に対する変位量の変化は僅かであり、明確 な効果は見られなかった。 (表 2.7)

以上をまとめると、CLT 床版の遮音性能について、以下のようになる。

- ・ 今年度と昨年度の CLT パネルの遮音性能を比較すると、同仕様の試験体の遮音性能はほぼ同等であり、生産ロットの違いによる遮音性能の差異はほとんどみられなかった。
- ・ CLT パネル (t=90mmm) を二重天井材として使用すると、重量・軽量床衝撃音遮断性能が大幅に改善する。なお、四周空気抜きや挿入材の有無によって性能が変化する。
- ・ CLT 床版の床上側に乾式二重床を施工することで、重量・軽量床衝撃音遮断性能を改善させることができる。また制振マットを追加すると遮音性能がさらに向上する。
- ・ CLT 床版の床上側に防音フローリングを施工すると、軽量床衝撃音遮断性能が改善する。ただし、ベース床である CLT 床版が素版の場合とせっこうボード+合板が施工された場合とで、防音フローリング施工後の遮音性能の差異はほとんど見られなかった。
- ・ 今回の実験結果の範囲から判断する限り、CLT 床版に炭素繊維開繊テープを貼付けても、重量床衝撃音遮断性能を改善させる効果は見られなかった。

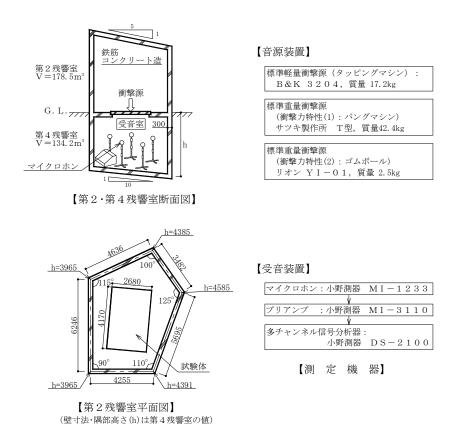


図 2.10 床衝撃音遮断性能試験装置の概要およびブロック図 (寸法単位:mm)

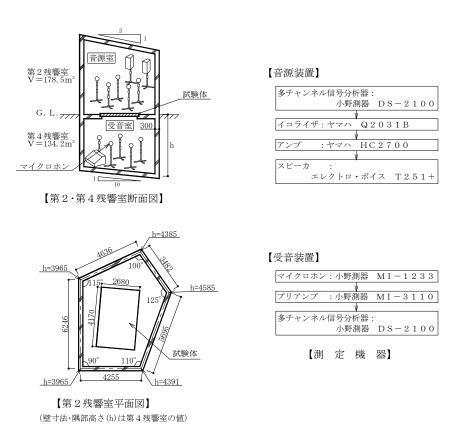
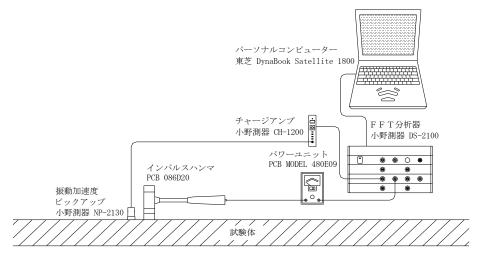



図 2.11 空気音遮断性能試験装置の概要およびブロック図 (寸法単位:mm)

【測定装置ブロック図】

【測定方法】

試験体に振動加速度ピックアップを固定し、その近傍をインパルスハンマで加振し、加振力および振動速度を測定した。これらの信号をFFT分析器に入力し、下記①~②の解析を行なった。サンプリング周波数は 12800Hz、測定時間は 1.28 秒とした。インパルスハンマは PCB 086D20 にミディアムヘッドを取り付けたもの(衝撃周波数:約200Hz)を用いた。

①衝撃時間内応答インピーダンス

衝撃時間内における加振力および振動速度の時間波形から衝撃時間内応答インピーダンスを求めた。なお、 各測定点に対して3回の測定結果を算術平均した。

②全時間応答インピーダンス

加振力および振動速度の時間波形を高速フーリエ変換し、3回測定のパワースペクトル算術平均値を用いて全時間応答インピーダンスを求めた。

図 2.12 衝撃インピーダンス試験装置の概要およびブロック図

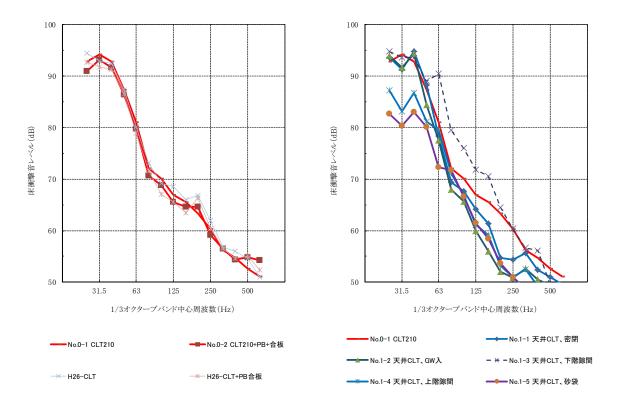


図 2.13 CLT 床の基本性能(重量衝撃)

図 2.14 CLT 天井付加の効果(重量衝撃)

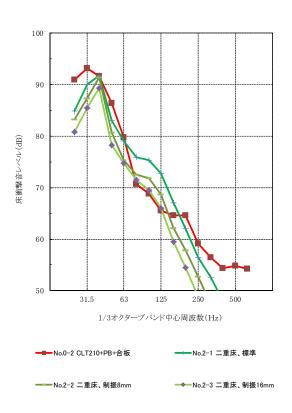


図 2.15 乾式二重床付加の効果(重量衝撃)

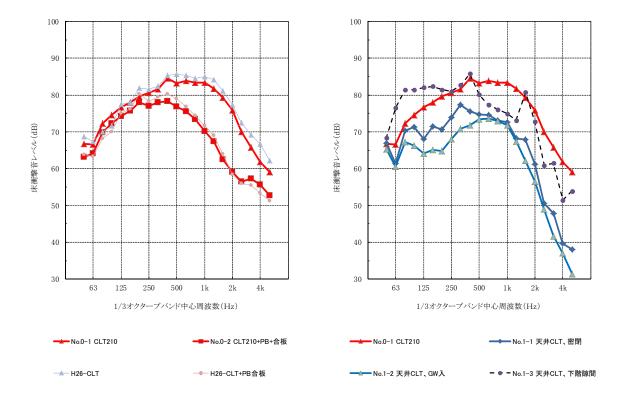


図 2.16 CLT 床の基本性能(軽量衝撃)

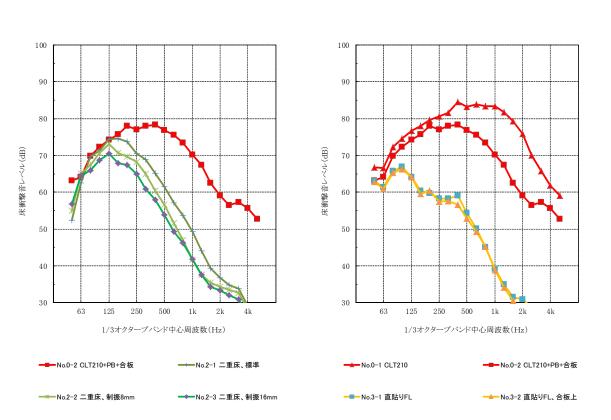


図 2.18 乾式二重床付加の効果(軽量衝撃) 図 2.19 防音フローリングの効果(軽量衝撃)

図 2.17 CLT 天井付加の効果(軽量衝撃)

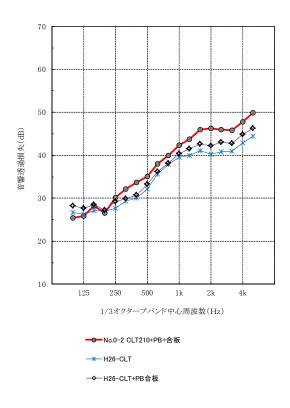


図 2.20 CLT 床の基本性能(音響透過損失)

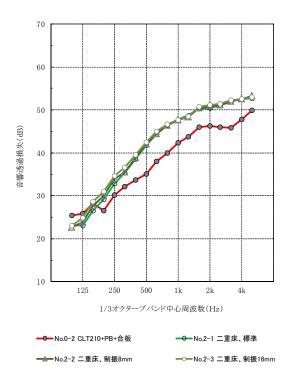


図 2.21 乾式二重床付加の効果(音響透過損失)

表 2.6 試験結果の一覧

No.	軽量床衝撃音 遮断性能 (タッピングマシン)	重量床衝撃音 遮断性能 (タイヤ衝撃源)	重量床衝撃音 遮断性能 (ボール衝撃源)	空気音 遮断性能 (音響透過損失)
0-1	Lr-91	Lr-66	Lr-65	
0-2	Lr-82	Lr-65	Lr-64	Rr-35
1-1	Lr-80	Lr-66	Lr-58	
1-2	Lr-79	Lr-63	Lr-55	
1-3	Lr-88	Lr-70	Lr-68	
1-4		Lr-62	Lr-58	
1-5		Lr-60		
2-1	Lr-71	Lr-65	Lr-60	Rr-39
2-2	Lr-67	Lr-61	Lr-57	Rr-39
2-3	Lr-64	Lr-59	Lr-55	Rr-40
3-1	Lr-61			
3-2	Lr-59			

表 2.7 試験結果の一覧

No.	衝撃時間内応答インピーダンス (dB)	固有振動数 (Hz)	静的載荷時のたわみ量 (mm)
4-1	96. 2	23	1.6
4-2	96. 5	19	1.9

2.3 実物件の測定事例データ集

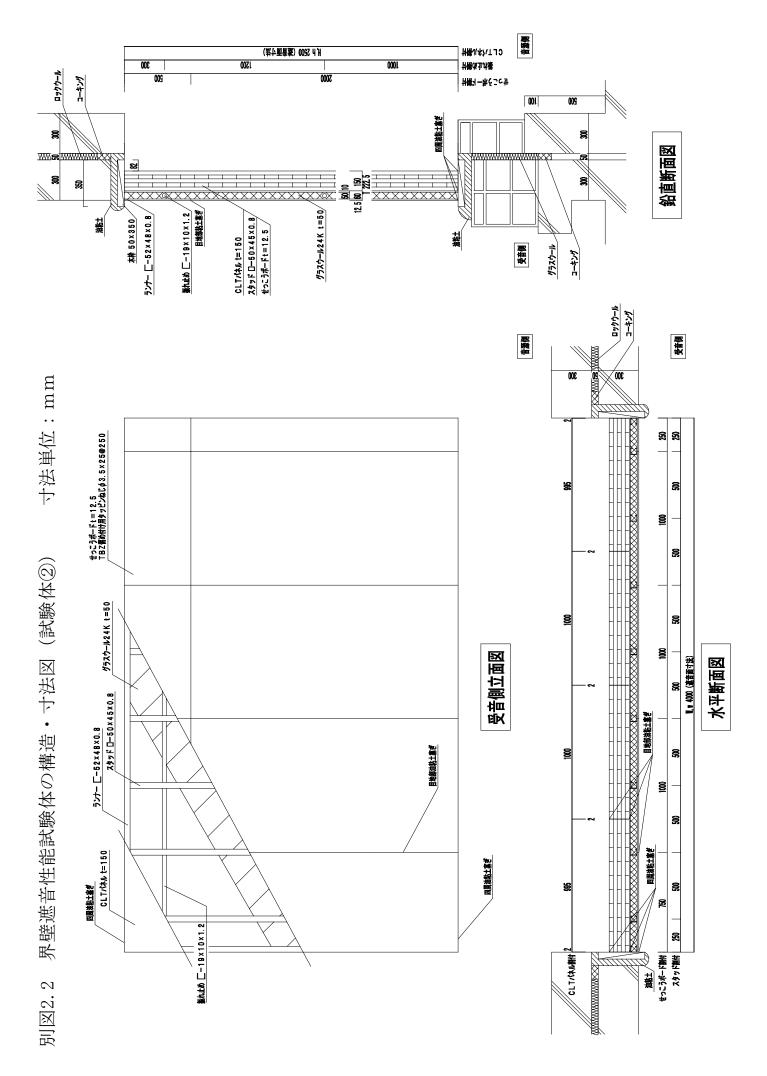
これまでに実際に建設された CLT 建築物の遮音性能に関する情報を整理するため、遮音性能の 測定事例に関するデータ集を作成した。

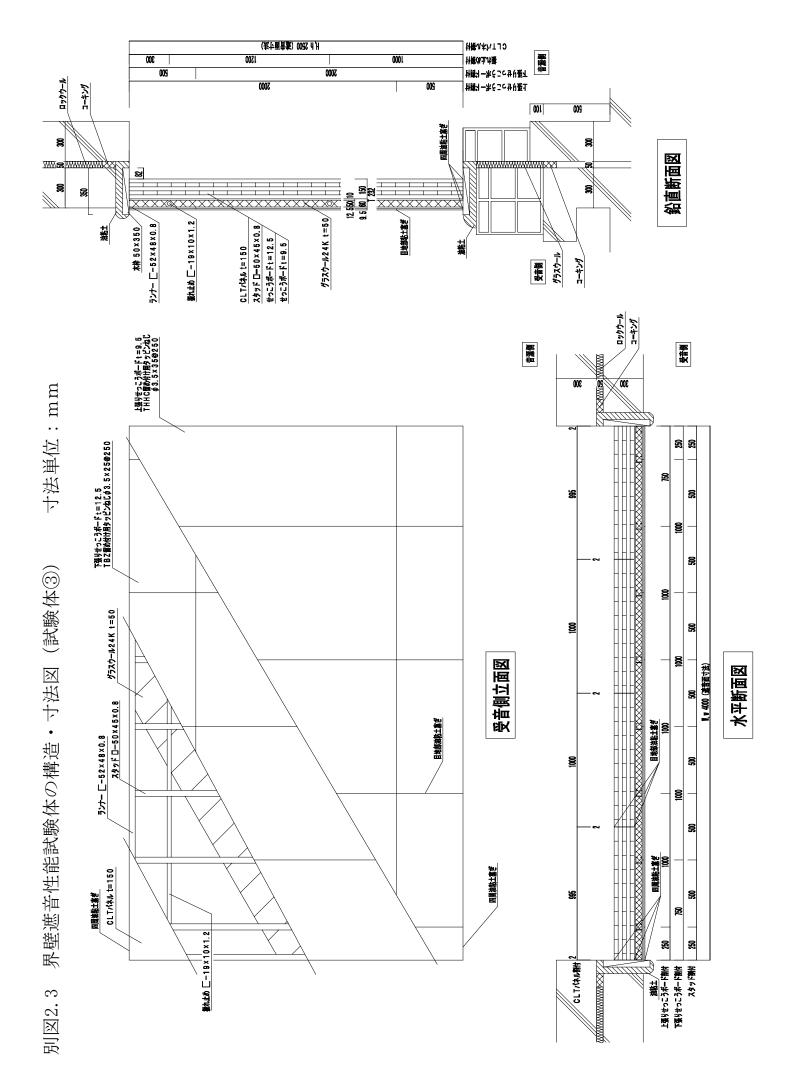
対象とした物件は、いずれも国内で建設された CLT 住宅であり、物件数は計 4 物件、測定データ数は計 16 室分である。データシートにまとめる音響性能値は、これまでに測定事例の蓄積が多い床衝撃音遮断性能(重量・軽量)とした。

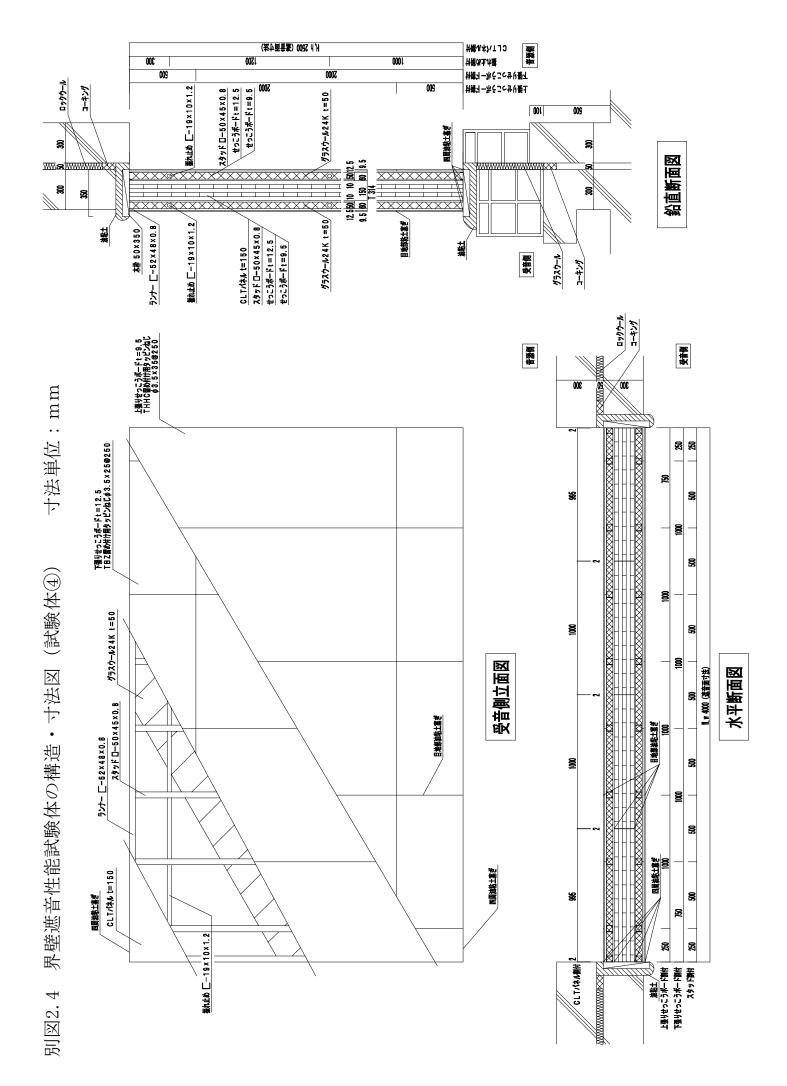
データシートは「1枚1測定結果」の構成とし、シート中に、物件に関する情報、測定箇所に 関する情報、測定対象断面に関する情報、測定結果に関する情報、を記載するようにした。

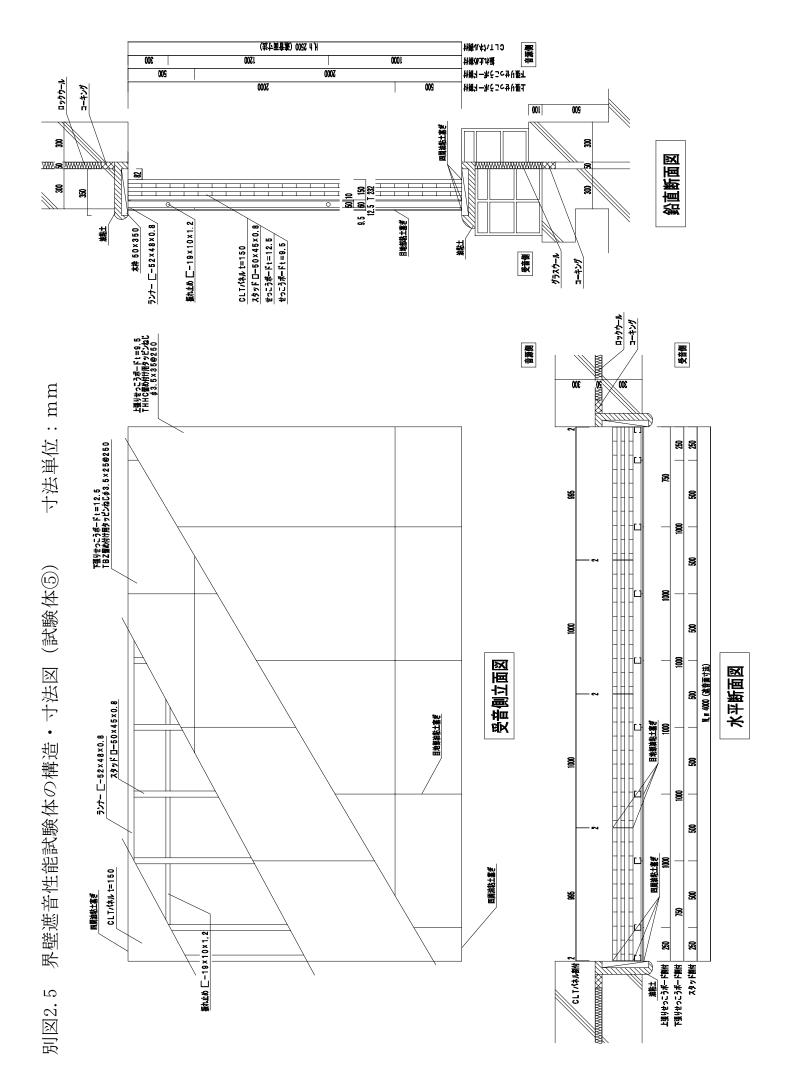
作成した「測定測定データシート」を資料編に示す。

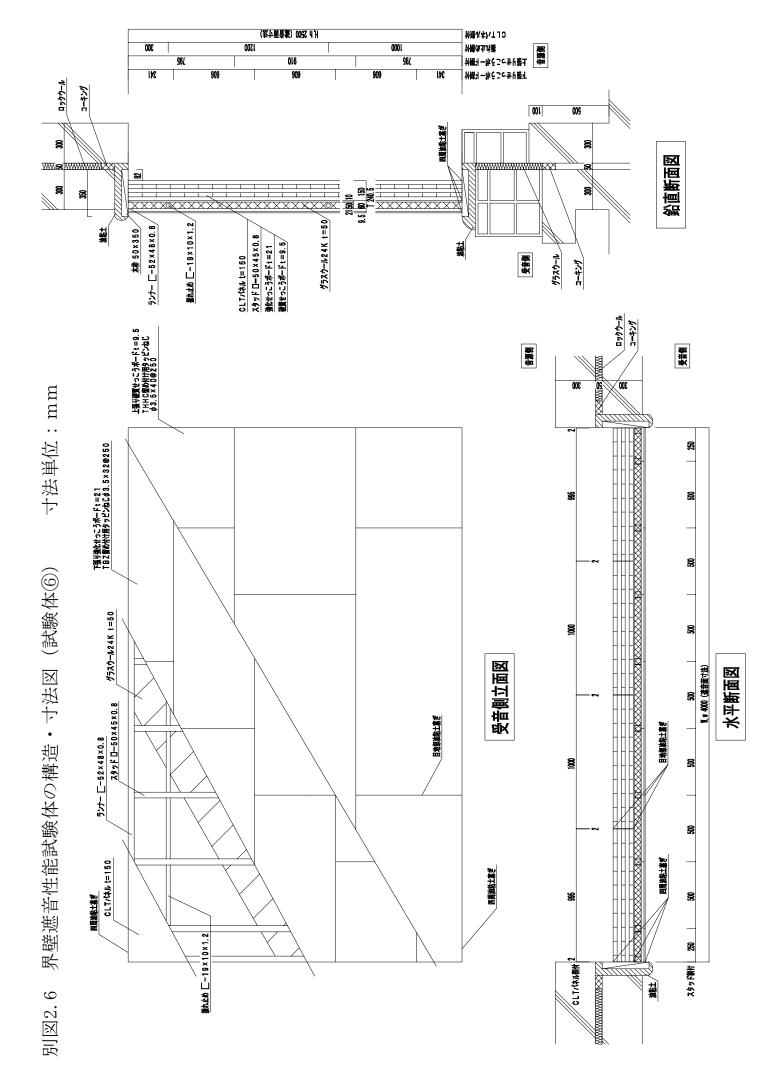
2.4 遮音性能のまとめ、今後の課題


本章でとりあげた、CLT 界壁の遮音性能試験、CLT 床版の遮音性能試験、実物件測定事例データ 集についてのまとめと今後の課題は以下の通りである。


- (1) CLT を使用した界壁に関して、基本的な遮音性能を把握するとともに、共同住宅の界壁に使用できる遮音対策仕様を 2 例(片面 CLT 現し、両面 CLT 現し)、提案することができた。これらの 2 つの壁仕様はいずれも、CLT パネル(t=150mm)を構造躯体の壁として使用することを前提としており、「両面 CLT 現し」の壁仕様についても追加される CLT パネル(t=90mm) は構造体では無く化粧材として付加されることを想定している。今後は、これら 2 仕様について、国土交通大臣による遮音界壁の個別認定を取得し、共同住宅などで広く使えるようにすることが求められる。なお、今回の実験では壁の断面欠損(コンセントやボルト接合部など)は評価対象に含めれていない。また、鉄筋コンクリート造の集合住宅での標準的な高遮音水準の壁仕様は実現できていない。今後、こうした遮音対策についても検討を行うことで、より幅広い工法や用途に対して CLT 界壁の応用が可能となる。
- (2) CLT を使用した床版に関しては、CLT パネル二重天井の試行、普及型の乾式二重床の適用、防音フローリングの適用を試み、いずれの方法も CLT 床版への遮音対策として有効な手段であることが確認できた。最も遮音性能の高い仕様では、今回の目標とした重量床衝撃音遮断性能に対する LH-60 の水準 (共同住宅として最低限の遮音性能水準)を到達できた。ただし、今回の実験では、天井・床仕上げの個々の要素による性能改善効果のみを確認しており、両方の技術を組合せた場合の遮音性能は確認できていない。今後は技術の組合せにより高い遮音性能水準の達成を確認するとともに、端部の納まりなど現実的な諸課題の解決方法の検討や、材工の費用も加味した普及型の断面仕様の開発が必要と考えられる。さらに、より高い遮音水準の仕様の開発とともに、実験室での検討に留まらず、実際の CLT 建物での施工性の検討や、実棟に適用した場合の遮音性能との対応なども検討が必要である。
- (3) 既往の CLT 住宅 4 物件について、床衝撃音遮断性能(重量・軽量)の測定データを統一した書式のデータシートにまとめた。今後も引き続き同形式での遮音データの収集を進め、設計者等へ提供できる資料作りを目指すことが望ましいと考えられる。


なお、今回の一連の遮音実験では、試行錯誤的に断面仕様を検討しているものもある。所期の 遮音性能を確保するためには細部まで注意深く再現する必要がある要素も含まれている(例えば、 乾式二重床の四周の隙間や支持脚の固定方法、CLT 二重天井の空気抜きの大きさと設置箇所、な ど)。今後、仕様の諸要因が遮音性能に与える影響度と変化の傾向についても充分に把握し、設 計仕様の標準化を図ること、および、現場施工時の品質管理における留意点も明確にすることが 特に必要であると考えられる。


また、実際に集合住宅を計画する際には、居間・寝室・台所など用途別・部位別の遮音性能の要求水準を把握するとともに、上下階住戸間あるいは隣接住戸間での居室の配置計画などに配慮することも、入居者の満足度確保のためには必須である。


今後、こうした注意点を踏まえ、実建物において安心して確実に遮音性能が確保できるような、 総合的な遮音設計マニュアルの整備を目指していくことが必要である。

下張り強化センこうポード t = 2 1 TBZ習め付け用タッピンねじゅ3.5×32@250 怒 窓 乭 乭 8 â 죓 8 읈 題 怒 25 £ 袅

341

909

窸

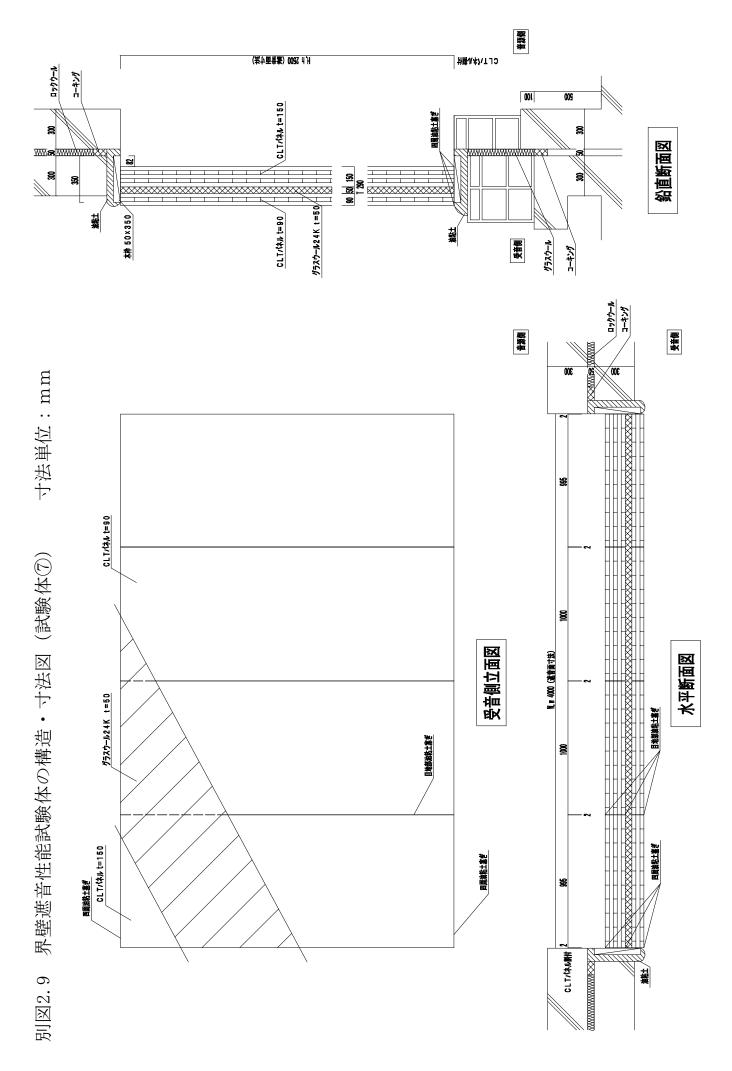
909

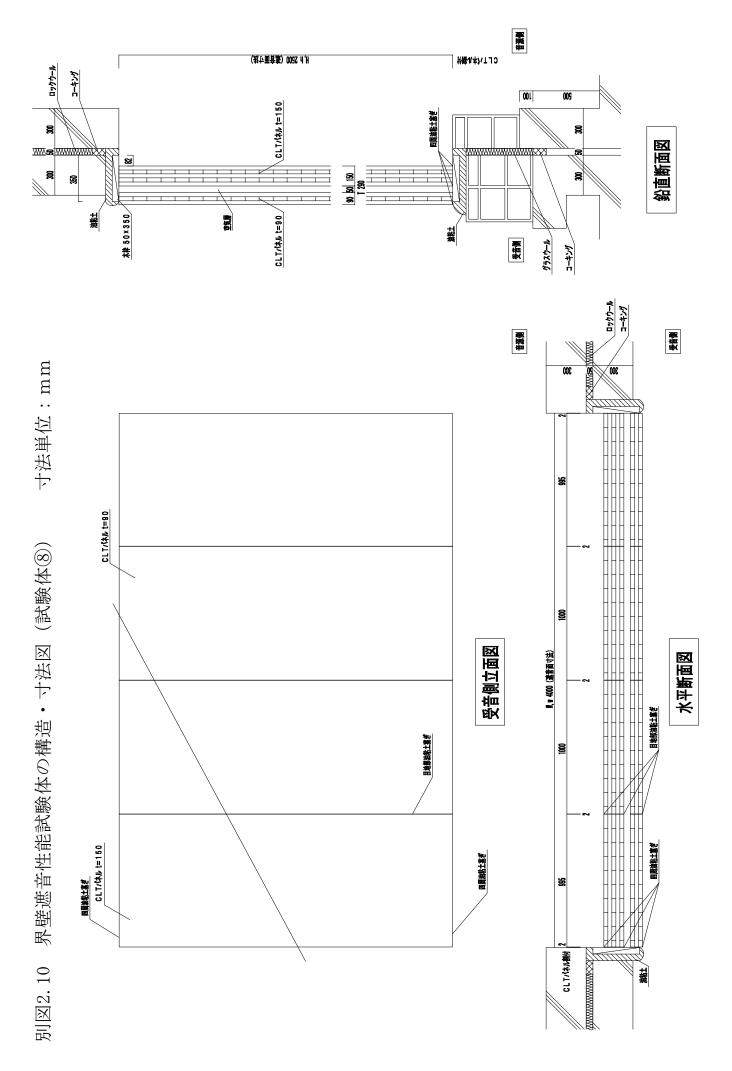
909

341

受音側立面図

※910×2400をカット

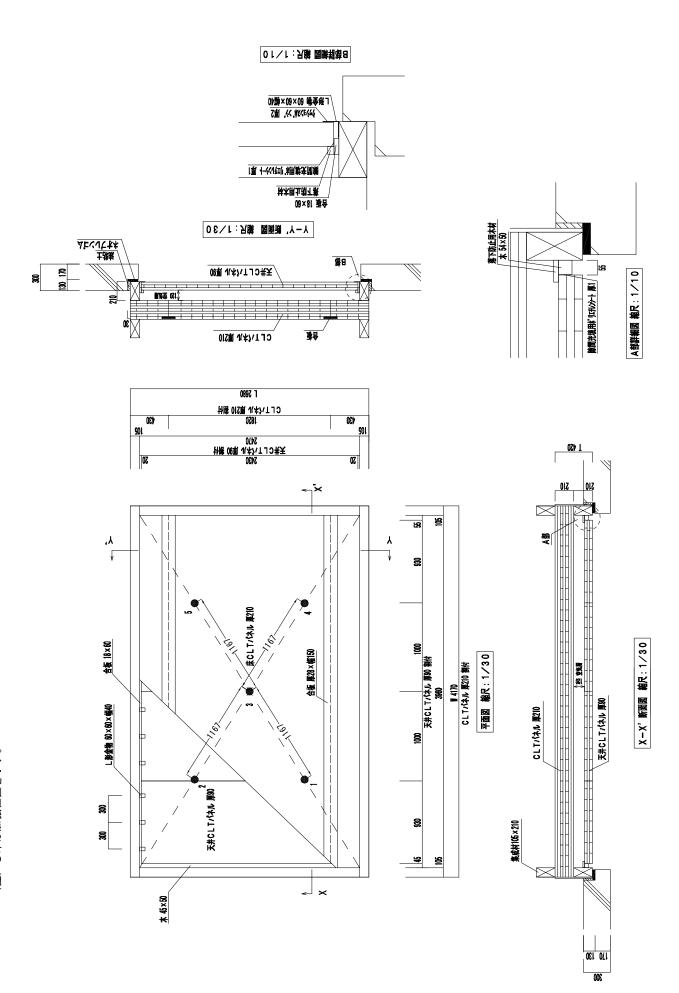

上張り硬質センこうポード t = 9.5 THHC智め付け用タッピンねじ ゆ3.5×40@250 跑 唇 <u> 22</u> 8 8 8 窓 1250 絕

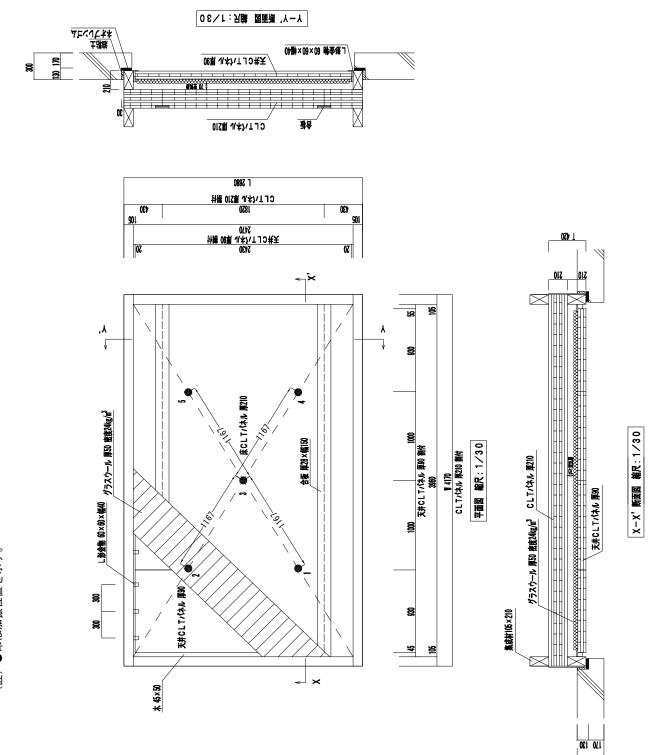

016

96*L*

96*L*

受音側立面図



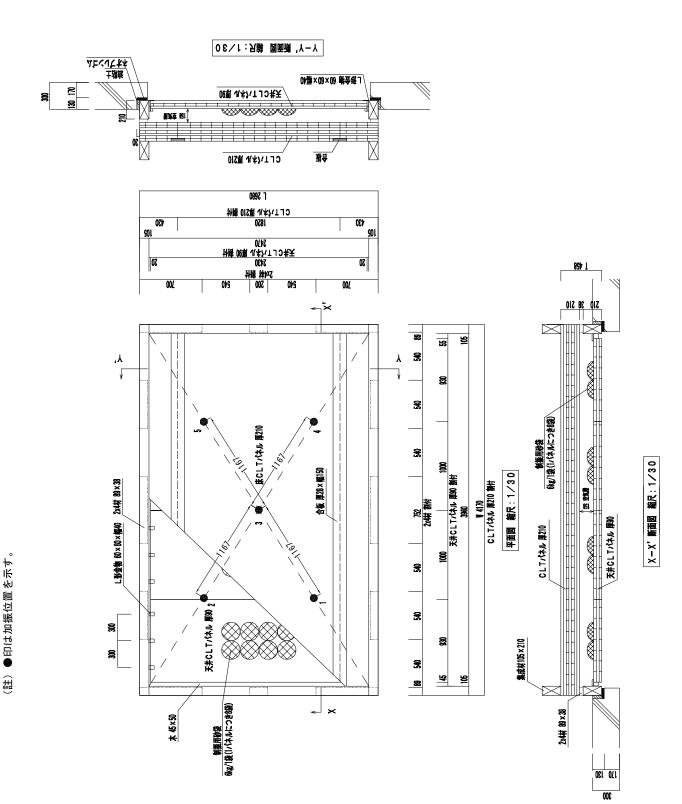

(註)●印は加振位置を示す。

寸法単位:mm

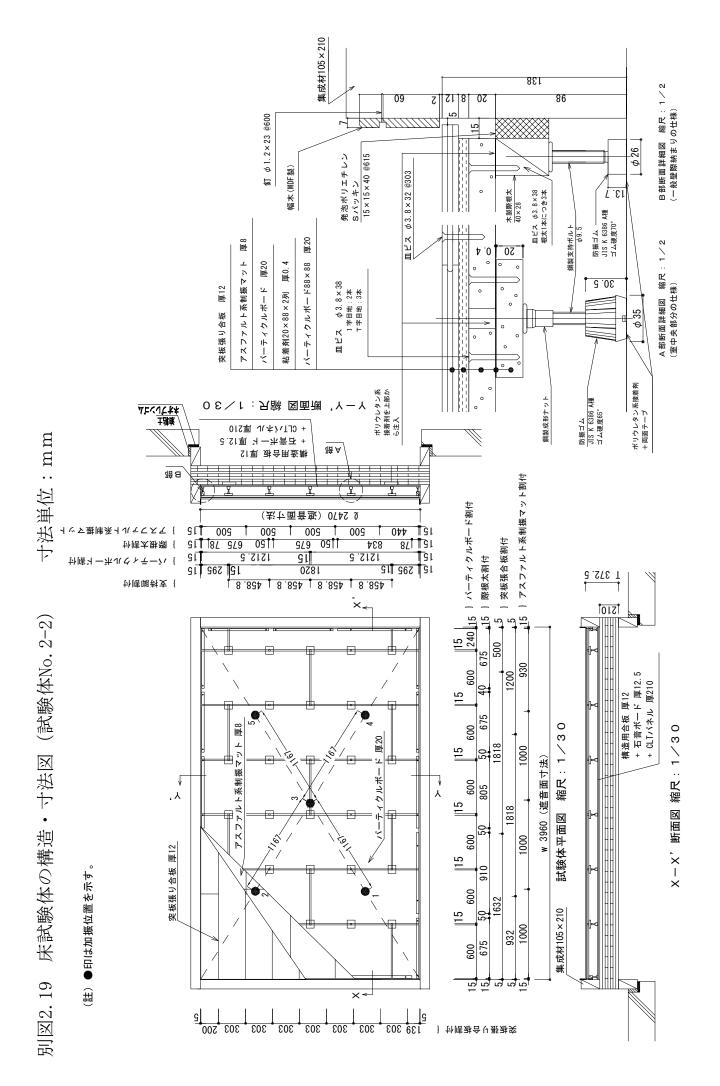
O E \ l : 凡辭 図面立 1850 430 (6番 (08×5.44) 入当 dl型 イヤサ代謝合 012×210 集成村105×210 各 CLT OIS×201林魚業 **0 E ∖ l : 只辭 図面間 'Y − Y** 上がま たよプレンゴム 謝台 210 210 CLTから集成材~ ピス 64.8×120@200 横を用合権 厚12 012取 4/キが 原210 012取 4/キが 原210 1 5680 け幅┦−氷€ニ正 901 901 CLTから集成村へ ビス ¢4.8×120@200 120 091 引車 イペサ化謝合 ន្ត ٨, 石膏ボード 置き敷き 욢 X-X 断面図 縮尺:1/30 平面図 輸尺: 1/30 8 w 3960 (諸普國寸法) 構造用合板割付 石こうボード割付 ¥4170 CLT整体 構造用合板 厚12 石膏ボード 厚12.5 GLTパネル 厚210 構造用合板 ビス止め四周**々4.2×50**@300 읈 器 集成村105×210 7 234.5 019 计嗜潮合用武券 016 (私七面音重) 0742 g 170 130

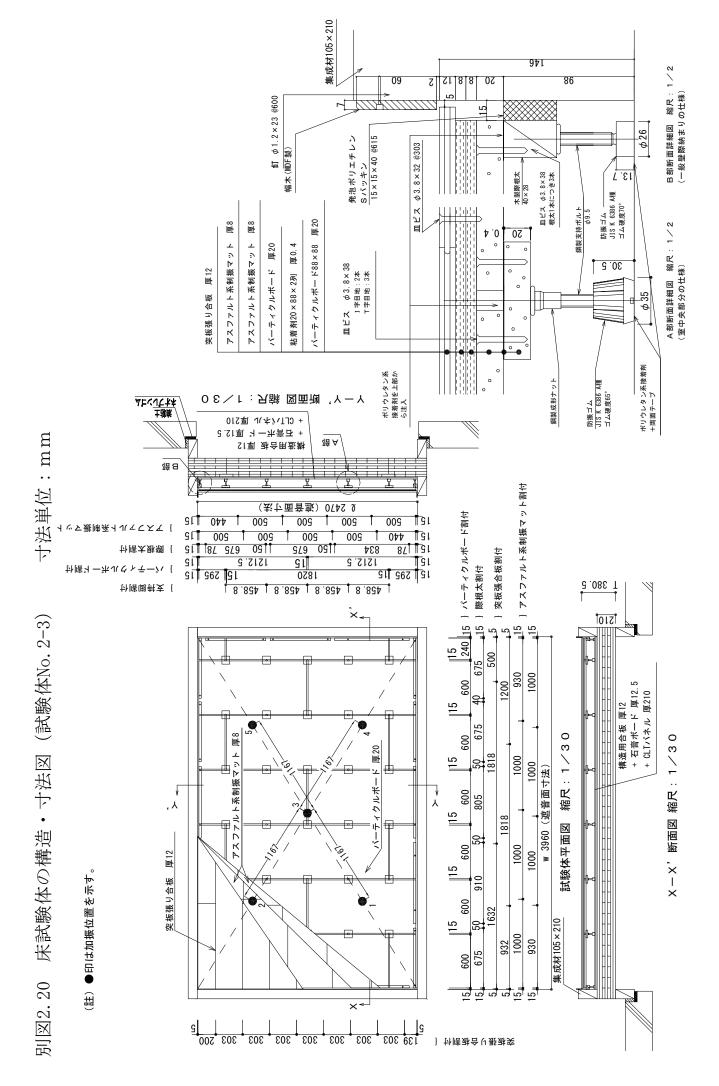
(註)●印は加振位置を示す。

(註)●印は加振位置を示す。


0 Γ∖ Γ: 兄辭 図聯精帯8 て直、パ. \$25.6744/ で直、パ. \$25.6744/ 02副 考裁浸空 **0 € ∖ l : 只藤 図面間 'Y−Y** 土部紙 Aたぐってもネ A部詳細図 縮尺: 1/10 130 170 06乳 4/木パトコン共天 空気抜き 幅22.5 木 54×50 落下防止用木材 **東東** 051\$ 瀬間充填用。「エルシー・厚1 CLT/{木小 厚210 7 5980 C L T パネル 厚210 割付1820 430 430 901 901 2630 計権 0<u>6</u>町 小木パーココ共天 0TAS 50 55 22.5 105 床CLTパネル 厚210 , 1000 天井CLTパネル 厚90 割付 3960 X-X, 新国國 編尺: 1/30 合板 厚28×幅150 平面図 縮尺: 1/30 1021 1021 W 4170 CLTパネル 厚210 割付 天井CLTパネル 厚90 L形金物 60×60×幅40 CLTパネル 厚210 天井CLTパネル 厚90⁶ 8 空気抜き 幅22.5 8 集成村105×210 8 2.5 0E1 071

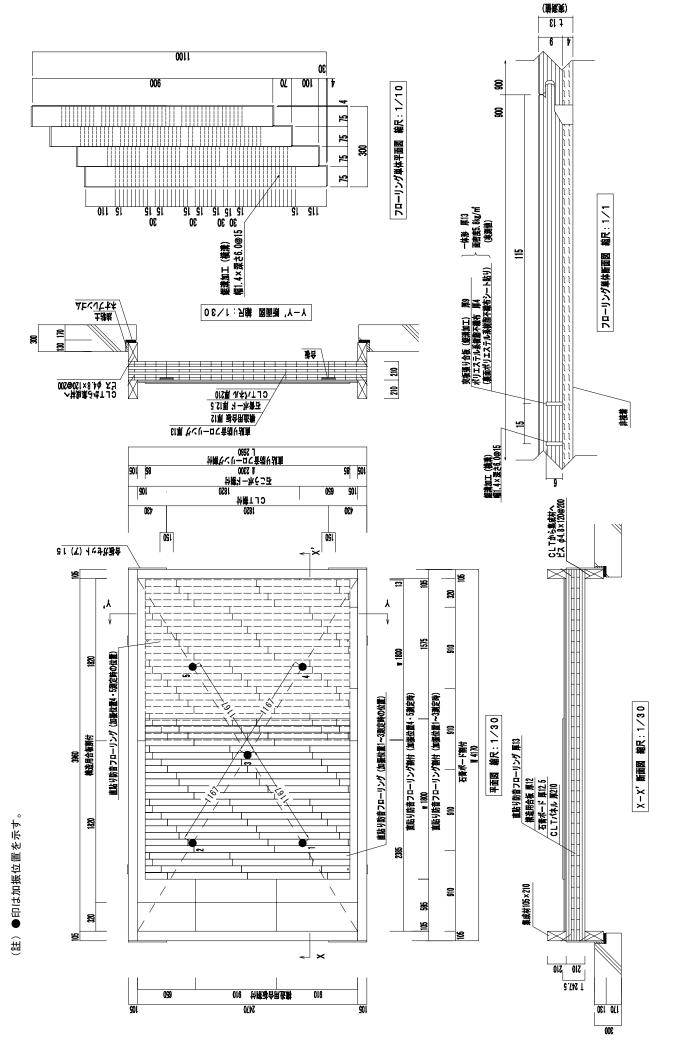
300


(註) ●印は加振位置を示す。

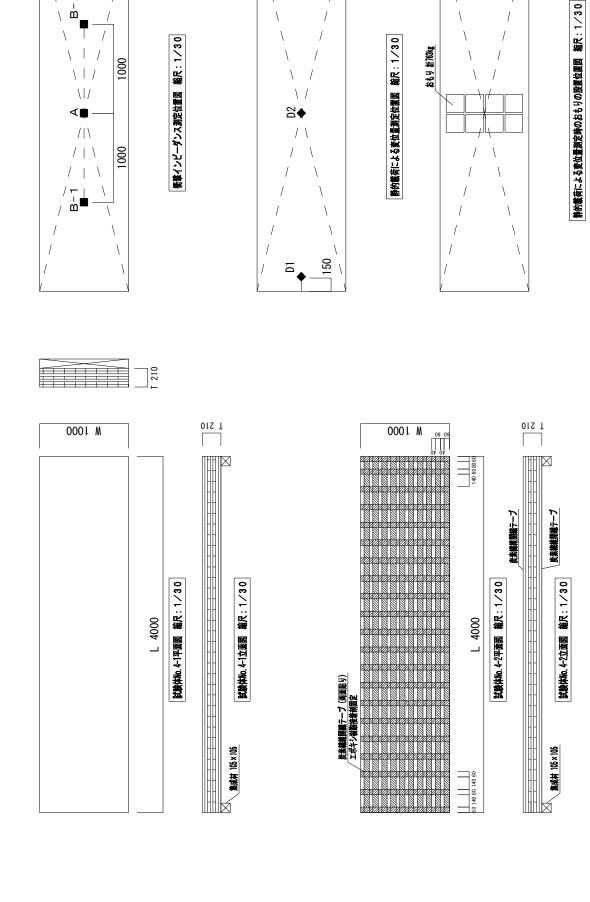

2x4# 89×38 0 € \ l : 凡辭 図面間 'Y − Y <u> 土部紙</u> Aたく**づた**も本 0pm×09×09 解要強7 63 170 06車 4/本パエコの表天 A部詳細図 縮尺: 1/10 2x4# 89×38 空気抜き 幅540×高さ38@12ヶ所 のに刺れ木が下ココ 7890 430 430 901 50 1 428 007 路 W W ۲, ۲ 윦 8 욼 床CLTパネル 厚210 Z X-X, 断面図 糖尺:1/30 合板 厚28×幅150 平画図 縮尺: 1/30 天井CLTパネル 厚90 割付 3960 W 4170 CLTパネル 厚210 割付 L形金物 60×60×幅40 2x4村 89×38 821 Mi Mi 天井CLTパネル 厚90 CLTパネル 厚210 읈 天井CLTパネル 厚90 옪 8 윦 集成村105×210 용 55 2x4# 89×38 木 45×50 0£1 0/1

300

44



El J (**谢**順実)


47

寸法単位:mm

別図2.23 床試験体の構造・寸法図 (試験体No.4-1,4-2)

◆印は静的載荷時の変位量測定位置を示す。 ■印は衝撃インピーダンス測定位置を示す。 (註)

<u>B</u>3

150

49

(1)四周木枠の組み立て

(2)四周木枠の取付状況

(3)CLTパネル(t=150mm)の取付状況

(4)CLTパネル(t=150mm)1枚を取り付けた状況

(5)測定状況(音源側)

(6)測定状況(受音側)

写真2.1 壁試験体の施工・測定状況

(1) CLTパネル(t=150mm)の取付状況

(2) CLTパネル(t=150mm)の取付状況

(3) CLTパネル(t=150mm)の取付状況

(4) CLTパネル(t=150mm)の取付状況

(5) CLTパネル(t=150mm)と木枠のビス留めの状況

(6) CLTパネル(t=150mm)4枚の設置状況

写真2.2 壁試験体①の施工状況

(1)LGSの施工状況

(2)LGSの取付状況

(3)GWの施工状況

(4)GWの取付状況

(5)下張りPB(12.5mm)の施工状況

(6)下張りPB(12.5mm)の設置状況

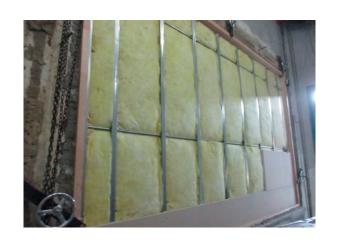
写真2.3 壁試験体②の施工状況

(1)上張りPB(9.5mm)の施工状況

(2)上張りPB (9.5mm)の設置状況

(3)LGSの取付状況(音源側)

(4)GWの取付状況(音源側)



(5)下張りPB(12.5mm)の設置状況 (音源側)

(6)上張りPB(9.5mm)の設置状況 (音源側)

写真2.4 壁試験体34の施工状況

(1)下張り強化PB(21mm)の施工状況

(2)下張り強化PB(21mm)の設置状況

(3)上張り硬質PB(9.5mm)の施工状況

(4)上張り硬質PB(9.5mm)の設置状況

写真2.5 壁試験体⑥の施工状況

(1)GWの施工状況

(2)GWの設置状況とCLTパネル(t=90mm)の施工状況

(3) CLTパネル(t=90mm)の設置状況

写真2.6 壁試験体⑦⑧の施工状況

(1)床衝擊音(軽量衝擊源)

(2)床衝撃音(タイヤ衝撃源)

(3)音響透過損失(音源側)

(4)床衝撃音および音響透過損失(受音側の残響室)

(5)衝撃インピーダンス測定

(6)静的載荷によるたわみ量測定

写真2.7 床試験体の測定状況

(1)下枠の組み立て

(2) 天井CLTパネル(t=90)の搬入

(3)天井CLTパネル(t=90)の設置

(4)床CLTパネル(t=210)の搬入

(5)床CLTパネル(t=210)の設置

(6)床CLTパネル(t=210)の設置状況

写真2.8 床試験体の施工状況

(1)試験体No.1-1の設置状況(床下側より)

(2)試験体No.0-1の設置状況

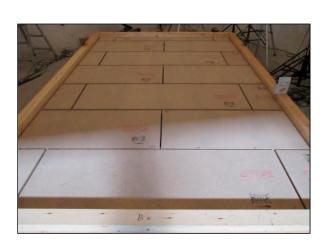
(3)試験体No.0-2の設置状況

(4)天井裏吸音材(グラスウール)の設置状況

(5)下階側の四周空気抜きの様子(試験体No.1-3)

(6)上階側の四周空気抜きの様子(試験体No.1-4)

写真2.9 床試験体の施工状況


(1)制振用砂袋の設置状況(試験体No.1-5)

(2) 乾式二重床際根太の割付(試験体No.2-1~2-3)

(3) 乾式二重床中央部の断面(試験体No.2-1~2-3)

(4)パーティクルボードの割付(試験体No.2-1~2-3)

(5)制振マットの割付(試験体No.2-2,2-3)

(6)制振マット(2層目)の割付(試験体No.2-3)

写真2.10 床試験体の施工状況

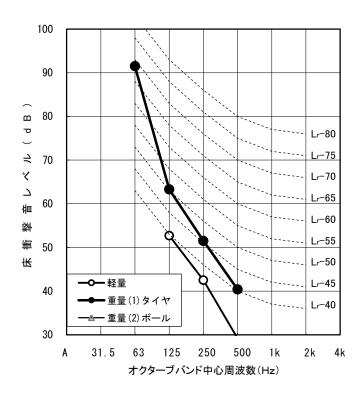
(1)突板張り合板(フローリング)の割付(試験体No.2-1)

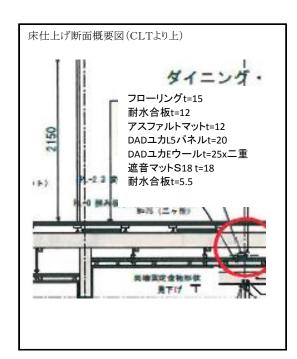
(2) 乾式二重床の全景(試験体No.2-1)

(3)幅木の設置状況(試験体No.2-1)

(4) 直貼り防音フローリングの設置状況(試験体No.3-2)

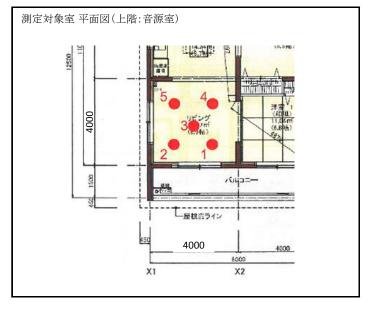
(5)試験体No.4-1の設置状況


(6)試験体No.4-2の設置状況


写真2.11 床試験体の施工状況

遮音測定データシート

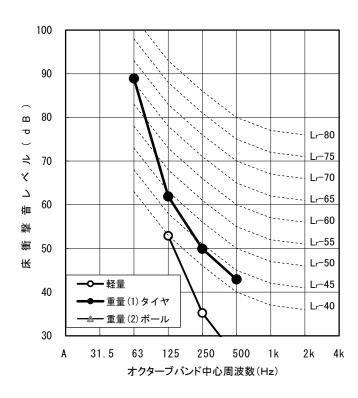

NIO	W- 1th 7 Th
NO	物件名称
NO 1	Neo-Trand(ネオートラッド)湯川 A棟
NO 2	Neo-Trand(ネオートラッド)湯川 A棟
NO 3	真庭市営CLT春日住宅
NO 4	真庭市営CLT春日住宅
NO 5	真庭市営CLT春日住宅
NO 6	真庭市営CLT春日住宅
NO 7	真庭木材事業協同組合CLT勝山共同住宅
NO 8	真庭木材事業協同組合CLT勝山共同住宅
NO 9	真庭木材事業協同組合CLT勝山共同住宅
NO 10	真庭木材事業協同組合CLT勝山共同住宅
NO 11	真庭木材事業協同組合CLT勝山共同住宅
NO 12	真庭木材事業協同組合CLT勝山共同住宅
NO 13	真庭木材事業協同組合CLT勝山共同住宅
NO 14	真庭木材事業協同組合CLT勝山共同住宅
NO 15	高知おおとよ製材株式会社 社員寮
NO 16	高知おおとよ製材株式会社 社員寮
NO 17	高知おおとよ製材株式会社 社員寮
NO 18	高知おおとよ製材株式会社 社員寮

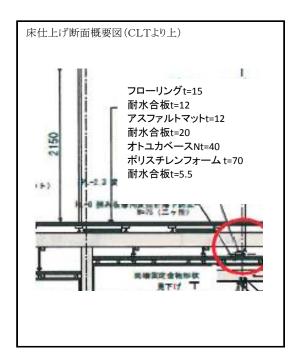

整理番号	No.1	
物件名	Neo-Trad(ネオートラッド)湯川A棋	
対象部位	界床	
上階室	リビング	
下階室	リビング	
CLT床版	厚 180 mm(5層6プライ)	
(スパン)	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	吊天井	
	軽量 : LL-40	
遮音等級	重量 : LH-70	
	ボール:LHB-	

	衝撃源	軽量	重量(1)	重量(2)
国手师		タッピング	タイヤ	ボール
遮音等級		40	70	
(L数)		(40)	(69)	
dB(A)		39.0	65.4	
	31.5			
(z	63		91.5	
H)	125	52.7	63.3	
7数	250	42.5	51.5	
中心周波数(Hz)	500	29.2	40.4	
Ź	1k	24.7		
+	2k	20.3		
	4k			
測定年月日		2	2015年4月12日	l

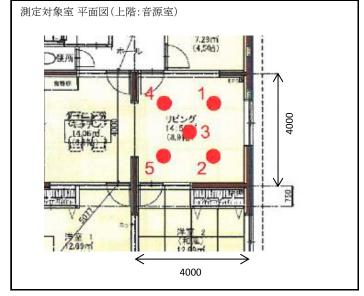
建物全体資料(図面・写真など)

建物外観


上階(音源室)平面図

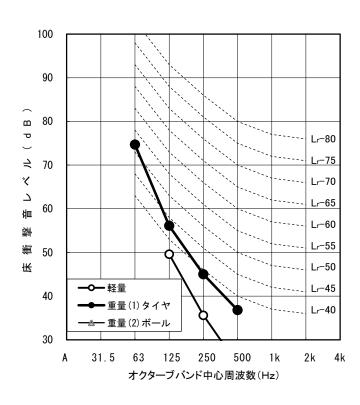

下階(受音室)平面図

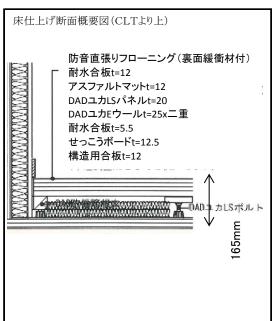
物件名称	Neo-Trad(ネオートラッド)湯川A棟
所在地	福島県湯川村美田園1
竣工年月日	2015年2月
測定機関	株式会社 アーキテック・コンサルティング 有限会社 音研
特記事項など	


整理番号	No.2		
物件名	Neo-Trad(ネオートラッド)湯川B棋		
対象部位	界床		
上階室	リビング		
下階室	リビング		
CLT床版	厚 180 mm(5層6プライ)		
(スパン)	4000mm × 4000mm		
床仕上げ	フローリング15mm		
天井仕様	吊天井		
	軽量 : LL-40		
遮音等級	重量 : LH-65		
	ボール:LHB-		

衝擊源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
遮音等級		40	65	
(L数)		(40)	(66)	
dB(A)		38.0	62.8	
	31.5			
(Z	63		88.9	
H)	125	52.9	61.9	
2数	250	35.2	49.9	
中心周波数(Hz)	500	31.1	42.9	
Ź	1k	25.1		
+	2k	20.7		
	4k			
測定年月日		6	2015年4月12日	

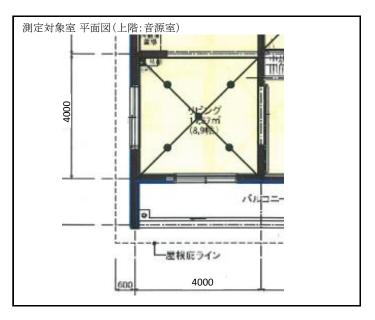
物件名称	Neo-Trad(ネオートラッド)湯川A棟
所在地	福島県湯川村美田園1
竣工年月日	2015年2月
測定機関	株式会社 アーキテック・コンサルティング 有限会社 音研
特記事項など	


B楝


X1

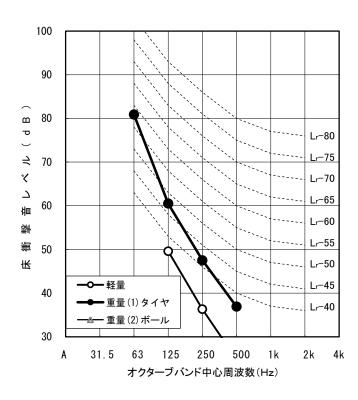
B棟

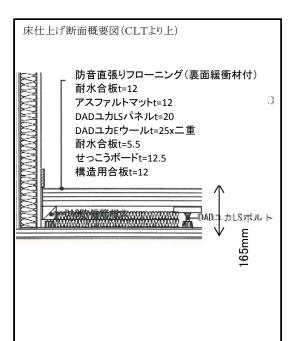
ХЗ

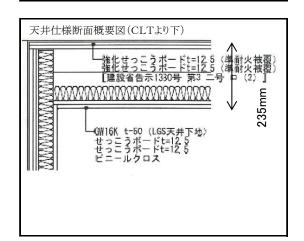

整理番号	No.3	
物件名	真庭市営CLT春日住宅	
対象部位	界床	
上階室	3階リビング	
下階室	2階リビング	
CLT床版	厚 180 mm(5層6プライ)	
(スパン)	4000mm × 4000mm	
床仕上げ	防音直張りフローリング	
天井仕様	独立二重天井	
	軽量 : LL-35	
遮音等級	重量 : LH-50	
	ボール: LHB-	

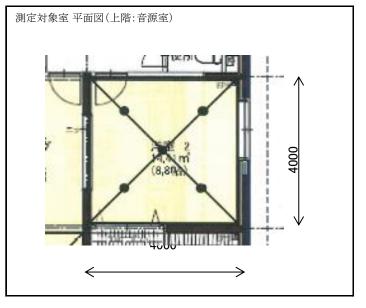
	数面概要	能化せっこ 能化せっこ	きボード	t=12.5 (2 t=12.5 (2	▲耐火被覆) 集耐火被覆)
	<u> </u>	経設省合	示1330号 XXXXXXX	第3 三号	235mm (3)
MAMAN	L _{GW1}	16K t-50	(LGS天井 ⁻ - ドt=12 5 - ドt=12 5	下地)	235
	Ľ:	ニールクロ	- Ft=12 5 1ス		

衝擊源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
遮音等級		35	50	
(L数)		(37)	(52)	
dB(A)		34.8	49.4	
	31.5			
(Z	63		74.7	
(H	125	49.6	56.1	
2数	250	35.6	45.0	
中心周波数(Hz)	500	24.4	36.8	
Ź	1k	19.6		
+	2k	16.3		
	4k			
測定年月日		2	2015年3月12日	

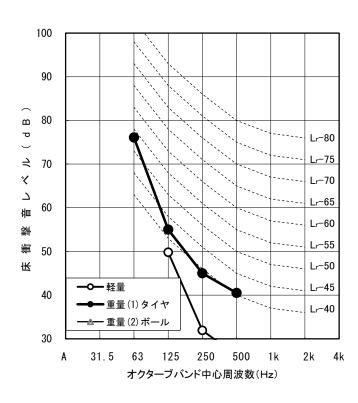


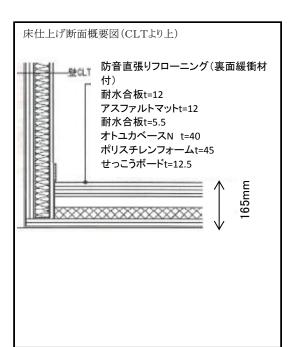

(一社)日本CLT協会 遮音測定データシート No.3

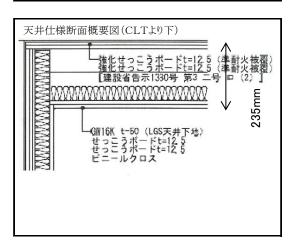

物件名称	真庭市営CLT春日住宅
所在地	岡山県真庭市月田1996
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

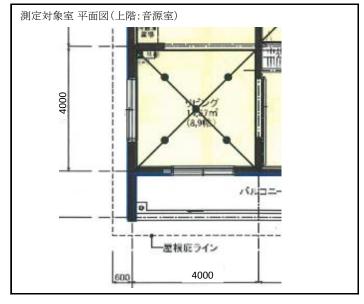

整理番号	No.4	
物件名	真庭市営CLT春日住宅	
対象部位	界床	
上階室	3階洋室2	
下階室	2階洋室2	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	防音直張りフローリング	
天井仕様	独立二重天井	
	軽量 : LL-35	
遮音等級	重量 : LH-60	
	ボール: LHB-	

衝擊源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
ì	庶音等級	35	60	
	(L数)	(37)	(58)	
	dB(A)	35.0	55.2	
	31.5			
(Z	63		80.9	
H)	125	49.6	60.5	
5数	250	36.3	47.5	
中心周波数(Hz)	500	24.8	36.9	
Ş	1k	19.6		
⊕	2k	17.3		
	4k			
測	定年月日	2015年3月12日		

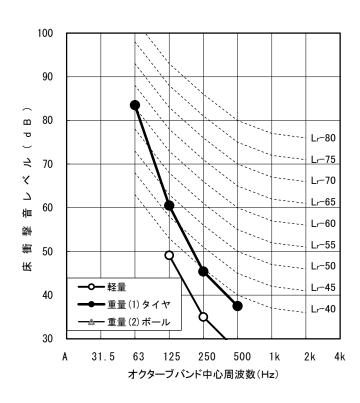


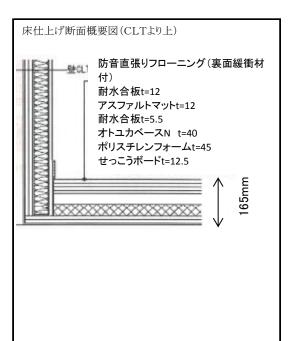


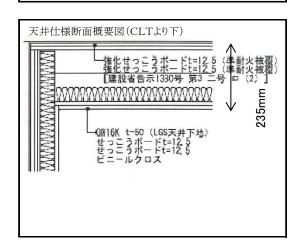

物件名称	真庭市営CLT春日住宅
所在地	岡山県真庭市月田1996
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

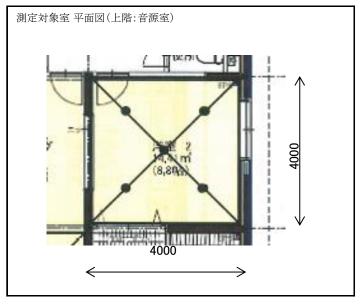

整理番号	No.5
物件名	真庭市営CLT春日住宅
対象部位	界床
上階室	2階リビング
下階室	1階リビング
CLT床版 (スパン)	厚 180 mm(5層6プライ)
	4000mm × 4000mm
床仕上げ	防音直張りフローリング
天井仕様	独立二重天井
	軽量 : LL-35
遮音等級	重量 : LH-55
	ボール: LHB-

衝擊源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
ì	庶音等級	35	55	
	(L数)	(37)	(54)	
	dB(A)	34.7	50.6	
	31.5			
(2	63		76.1	
(H	125	49.8	55.0	
2数	250	31.9	45.0	
中心周波数(Hz)	500	26.2	40.5	
Ź	1k	21.7		
-	2k	17.6		
	4k			
測	定年月日	2015年3月12日		

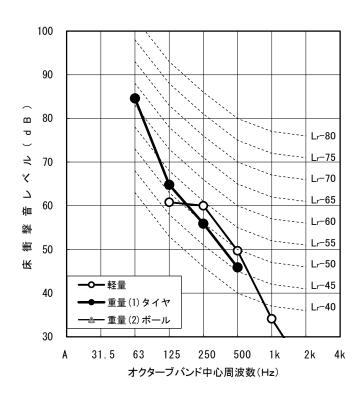


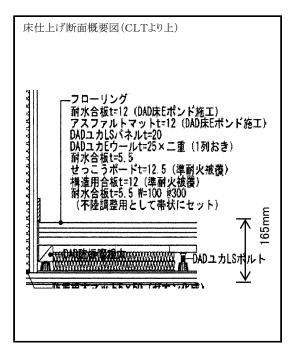


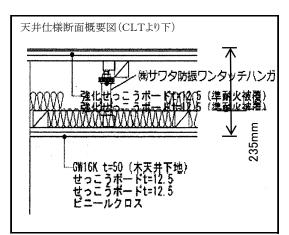

物件名称	真庭市営CLT春日住宅
所在地	岡山県真庭市月田1996
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

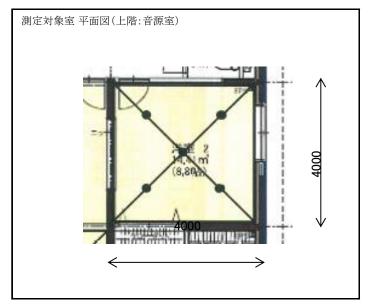

整理番号	No.6	
物件名	真庭市営CLT春日住宅	
対象部位	界床	
上階室	2階洋室2	
下階室	1階洋室2	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	防音直張りフローリング	
天井仕様	独立二重天井	
	軽量 : LL-35	
遮音等級	重量 : LH-60	
	ボール: LHB-	

衝擊源		軽量	重量(1)	重量(2)
	闰手伽	タッピング	タイヤ	ボール
ì	庶音等級	35	60	
	(L数)	(37)	(61)	
	dB(A)	34.6	57.6	
	31.5			
(2	63		83.5	
(H)	125	49.1	60.5	
2数	250	35.0	45.4	
中心周波数(Hz)	500	27.2	37.5	
Ź	1k	21.7		
+	2k	17.6		
	4k			
測定年月日 2015年3月12日		1		

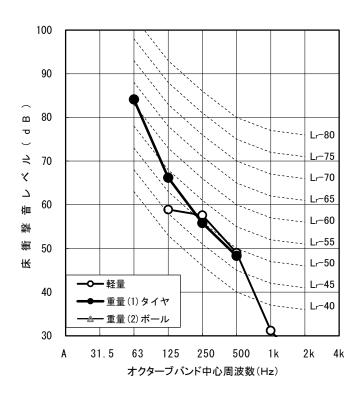


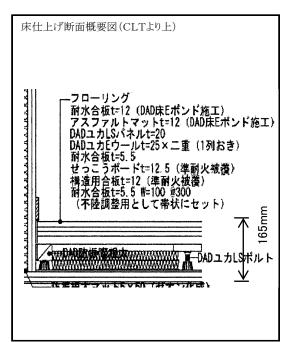


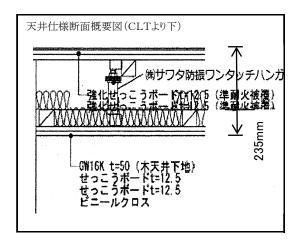

物件名称	真庭市営CLT春日住宅
所在地	岡山県真庭市月田1996
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

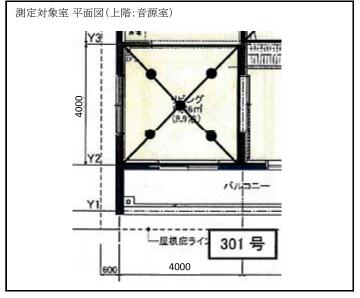

整理番号	No.7	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	301号洋室2	
下階室	201号洋室2	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング	
天井仕様	吊天井	
	軽量 : LL-55	
遮音等級	重量 : LH-60	
	ボール: LHB-	

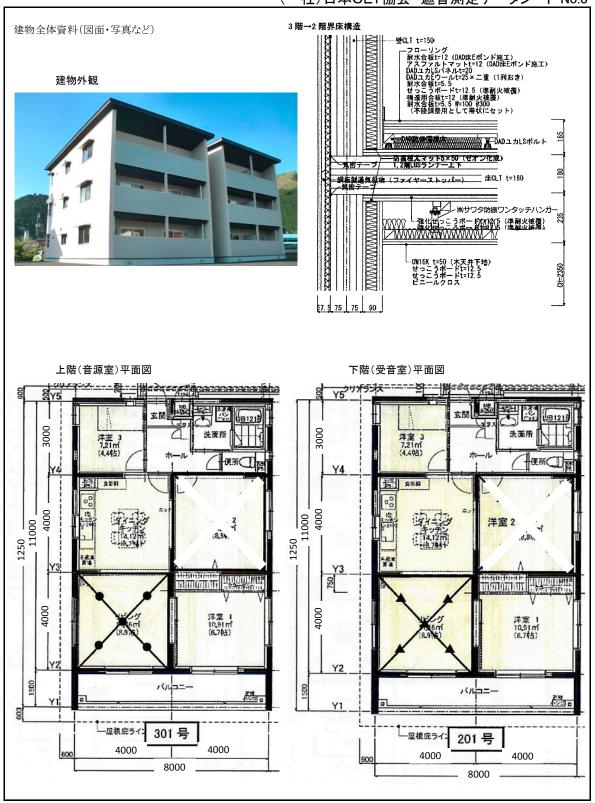
衝擊源		軽量	重量(1)	重量(2)
	国手 伽	タッピング	タイヤ	ボール
ì	庶音等級	55	60	
	(L数)	(54)	(62)	
	dB(A)	53.3	59.2	
	31.5			
(z	63		84.6	
(H	125	60.8	64.8	
7数	250	60.0	55.9	
中心周波数(Hz)	500	49.7	45.9	
Ź	1k	34.1		
+	2k	22.0		
	4k			
測	定年月日	日 2015年3月13日		1



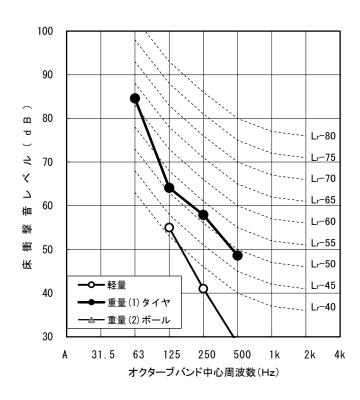


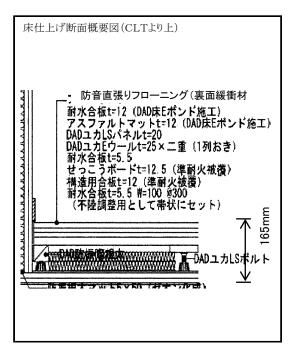

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

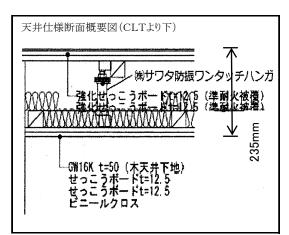

整理番号	No.8	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	301号リビング	
下階室	201号リビング	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング	
天井仕様	吊天井	
	軽量 : LL-50	
遮音等級	重量 : LH-60	
	ボール:LHB-	

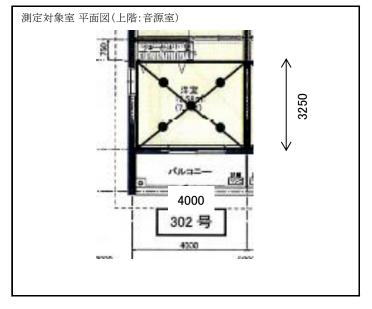


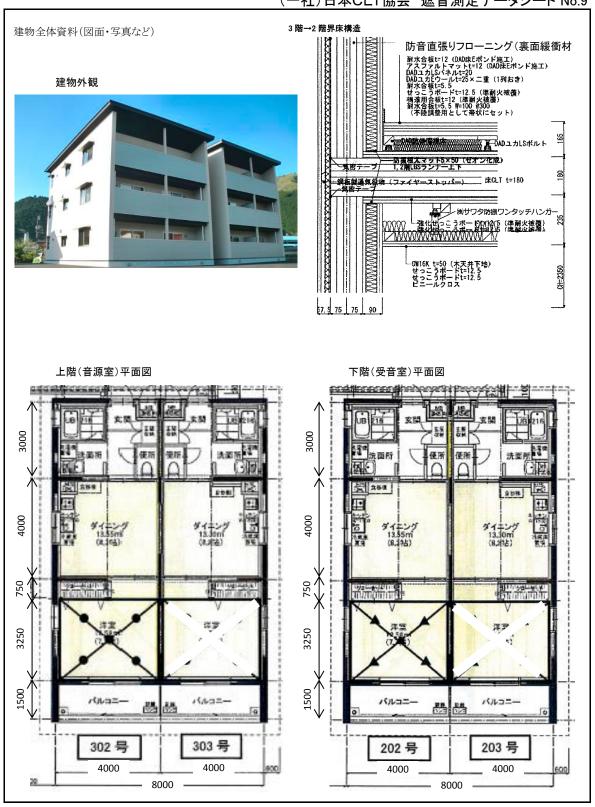
衝撃源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
ì	庶音等級	50	60	
	(L数)	(52)	(62)	
	dB(A)	51.4	59.1	
	31.5			
(Z	63		84.1	
H)	125	58.9	66.2	
2数	250	57.6	55.8	
中心周波数(Hz)	500	49.0	48.3	
Ź	1k	31.2		
+	2k	22.1		
	4k			
測]定年月日	2015年3月13日		1



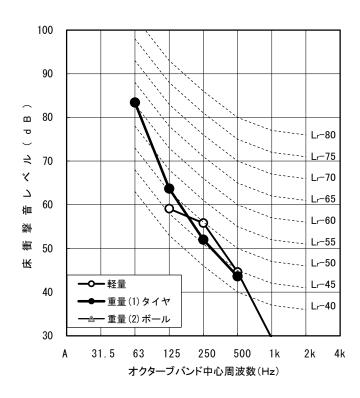


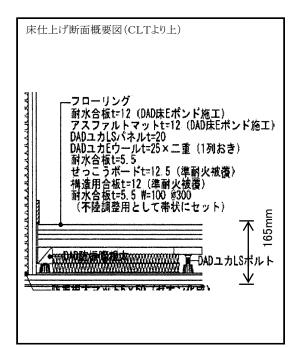

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	


整理番号	No.9
物件名	真庭木材事業協同組合CLT勝山協同住宅
対象部位	界床
上階室	302号洋室
下階室	202号洋室
CLT床版 (スパン)	厚 180 mm(5層6プライ)
	4000mm × 4000mm
床仕上げ	防音直張りフローリング
天井仕様	吊天井
	軽量 : LL-40
遮音等級	重量 : LH-60
	ボール: LHB-

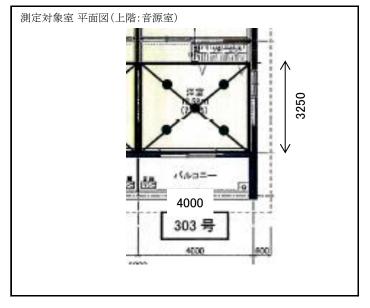


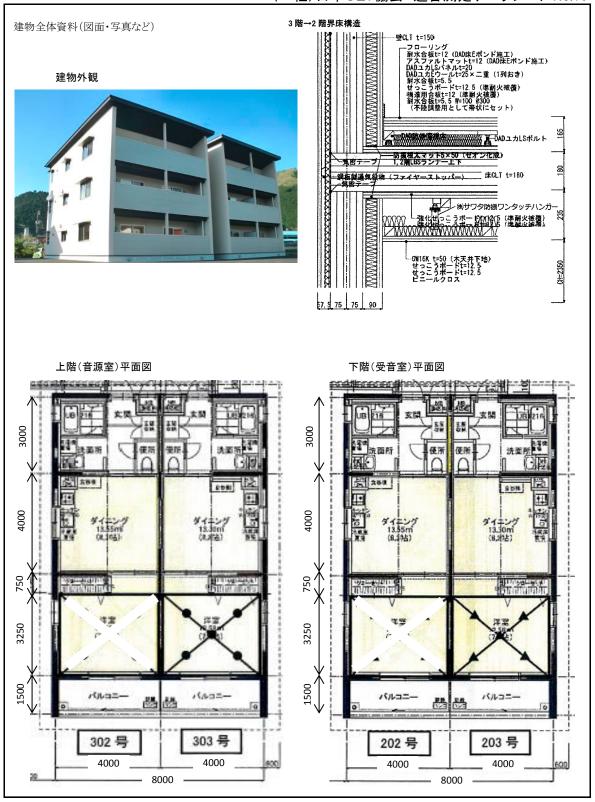
衝撃源		軽量	重量(1)	重量(2)
	国争你	タッピング	タイヤ	ボール
j	庶音等級	40	60	
	(L数)	(42)	(62)	
	dB(A)	40.1	59.4	
	31.5			
(2	63		84.6	
H)	125	55.0	64.1	
7数	250	41.0	57.9	
中心周波数(Hz)	500	28.5	48.6	
Ź	1k	24.0		
+	2k	18.2		
	4k			
測定年月日 2015年3月13日				



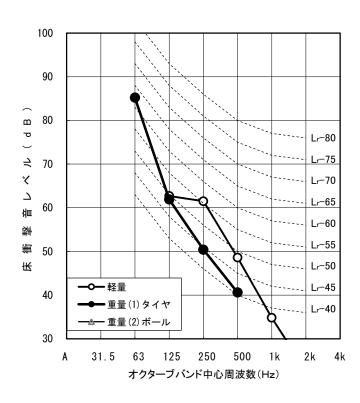


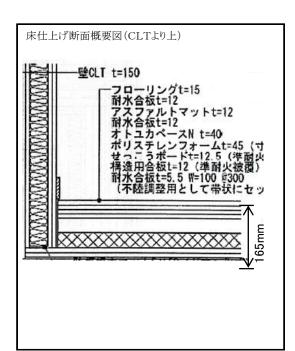
物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

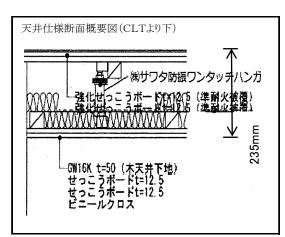

整理番号	No.10	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	303号洋室	
下階室	203号洋室	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング	
天井仕様	吊天井	
	軽量 : LL-50	
遮音等級	重量 : LH-60	
	ボール:LHB-	



	衝撃源	軽量	重量(1)	重量(2)
	因手M	タッピング	タイヤ	ボール
j	庶音等級	50	60	
	(L数)	(50)	(61)	
	dB(A)	49.4	57.9	
	31.5			
(Z	63		83.4	
H)	125	59.1	63.7	
2数	250	55.8	52.0	
中心周波数 (Hz)	500	44.6	43.6	
Į	1k	29.4		
1 +	2k	19.7		
	4k			
測定年月日 2015年3月13日		1		

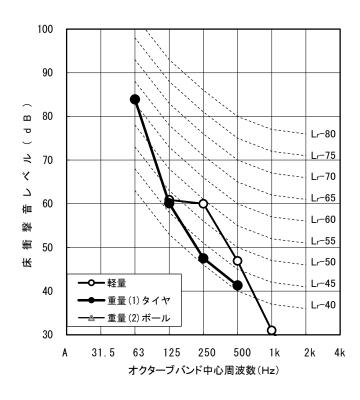


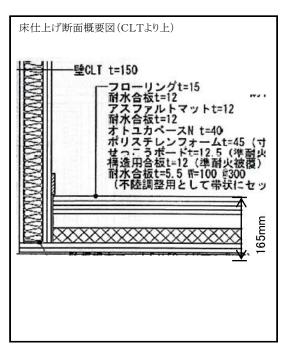


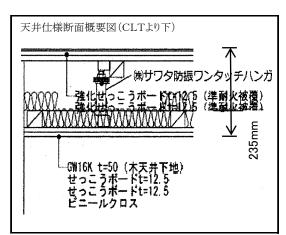

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

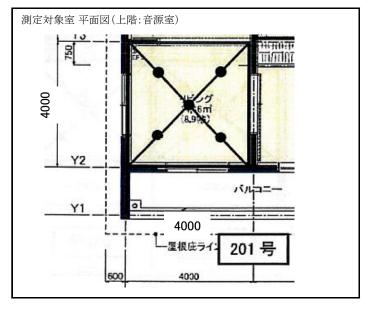
整理番号	No.11	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	201号洋室2	
下階室	101号洋室2	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	吊天井	
	軽量 : LL-55	
遮音等級	重量 : LH-65	
	ボール:LHB-	

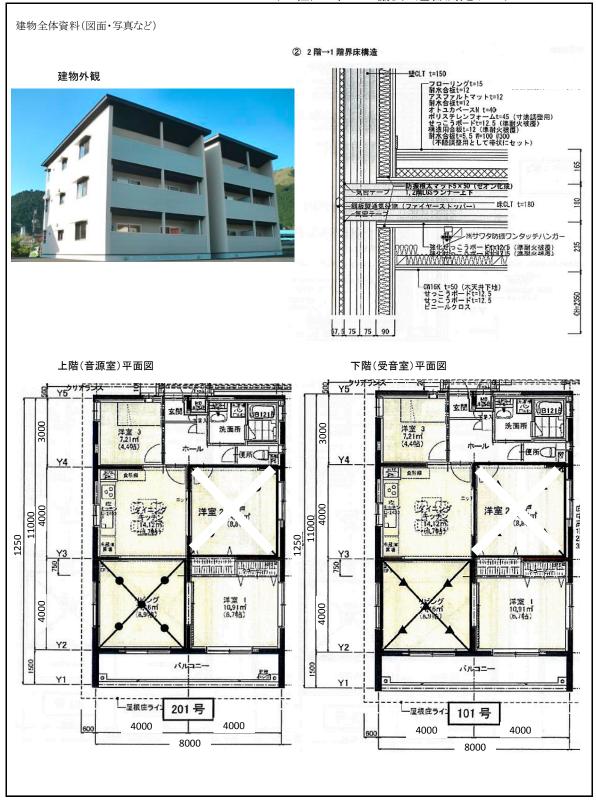
衝撃源		軽量	重量(1)	重量(2)
		タッピング	タイヤ	ボール
j	庶音等級	55	65	
	(L数)	(56)	(63)	
	dB(A)	54.5	59.3	
	31.5			
(Z	63		85.2	
H)	125	62.7	61.9	
中心周波数(Hz)	250	61.5	50.4	
三	500	48.6	40.6	
Ş	1k	34.8		
 	2k	22.7		
	4k			
測	定年月日	日 2015年3月13日		1



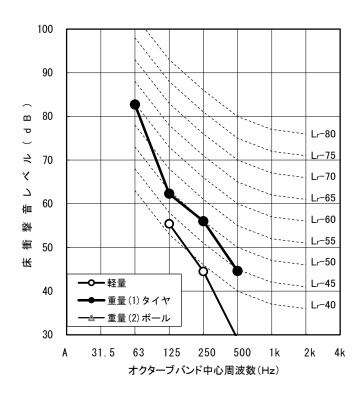


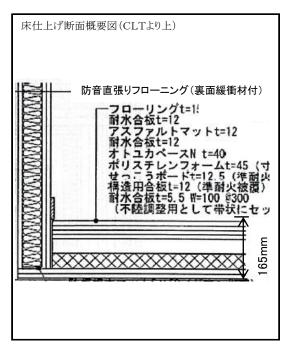

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

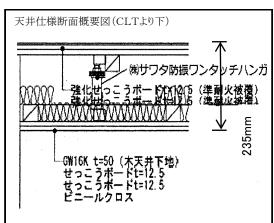

整理番号	No.12
物件名	真庭木材事業協同組合CLT勝山協同住宅
対象部位	界床
上階室	201号リビング
下階室	101号リビング
CLT床版 (スパン)	厚 180 mm(5層6プライ)
	4000mm × 4000mm
床仕上げ	フローリング15mm
天井仕様	吊天井
	軽量 : LL-55
遮音等級	重量 : LH-60
	ボール: LHB-

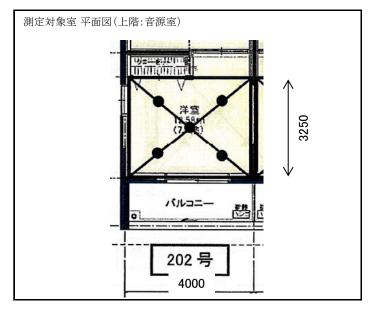


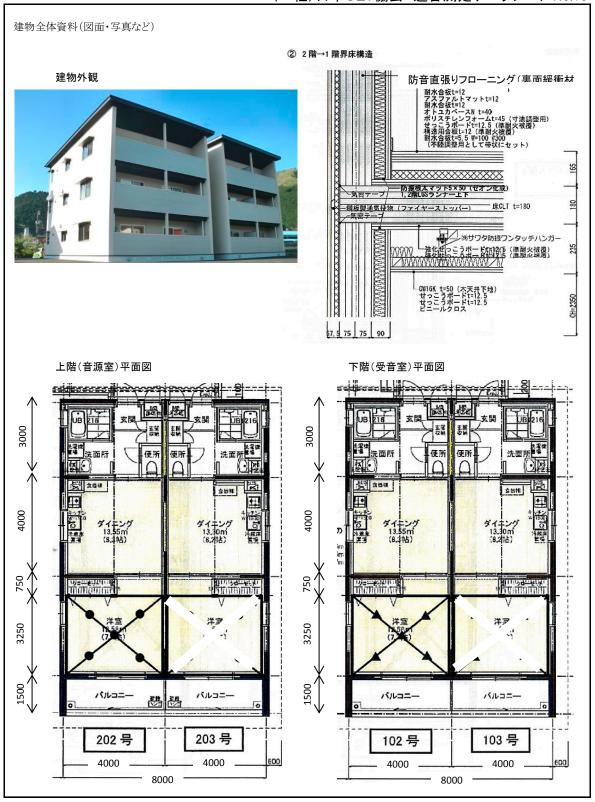
衝撃源		軽量	重量(1)	重量(2)
	国争你	タッピング	タイヤ	ボール
ì	庶音等級	55	60	
	(L数)	(54)	(61)	
	dB(A)	52.9	58.0	
	31.5			
中心周波数(Hz)	63		83.9	
	125	60.9	60.1	
2数	250	60.0	47.5	
司	500	46.9	41.3	
Ź	1k	31.0		
+	2k	19.7		
	4k			
測定年月日		2	2015年3月13日	l



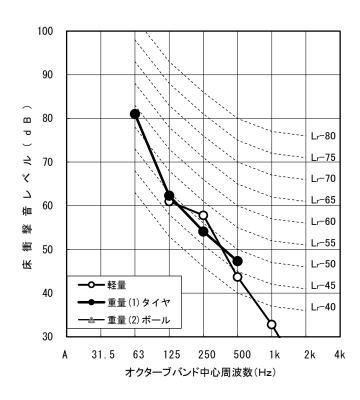


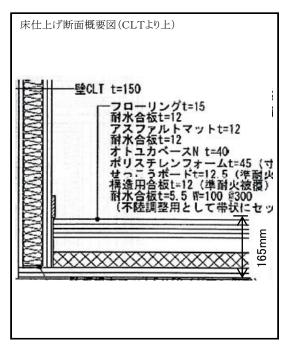

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

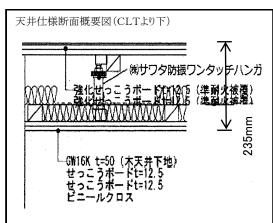

整理番号	No.13	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	202号洋室	
下階室	102号洋室	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	防音直張りフローリング	
天井仕様	吊天井	
	軽量 : LL-45	
遮音等級	重量 : LH-60	
	ボール: LHB-	

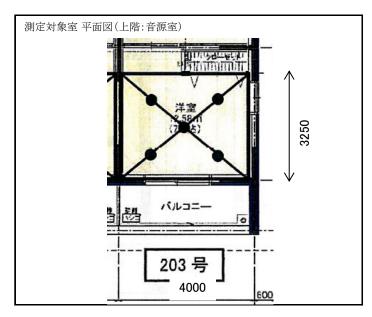


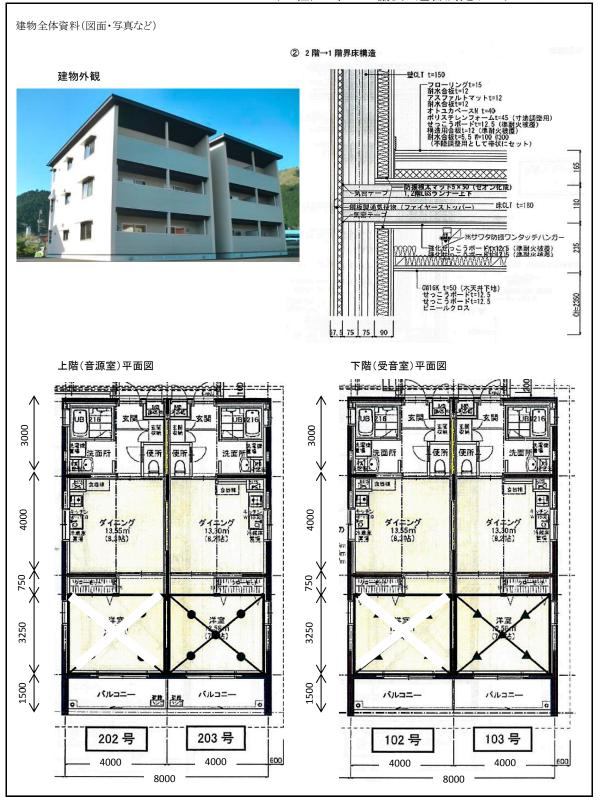
衝撃源		軽量 タッピング	重量(1) タイヤ	重量(2) ボール
ì	庶音等級	45	60	
	(L数)	(43)	(60)	
	dB(A)	41.2	57.5	
	31.5			
(Z	63		82.7	
H)	125	55.4	62.3	
2数	250	44.5	56.0	
中心周波数(Hz)	500	29.0	44.6	
Ž	1k	22.8		
 1	2k	17.4		
	4k			
測]定年月日	2015年3月13日		1



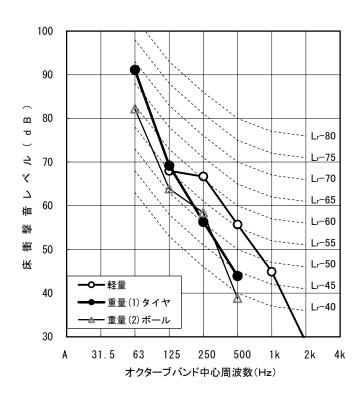


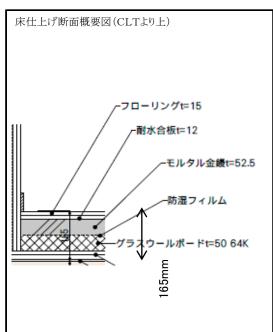

物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	

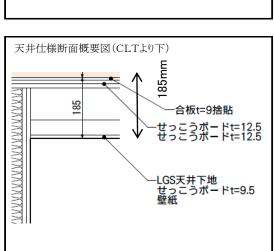

整理番号	No.14	
物件名	真庭木材事業協同組合CLT勝山協同住宅	
対象部位	界床	
上階室	203号洋室	
下階室	103号洋室	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	吊天井	
	軽量 : LL-50	
遮音等級	重量 : LH-60	
	ボール:LHB-	



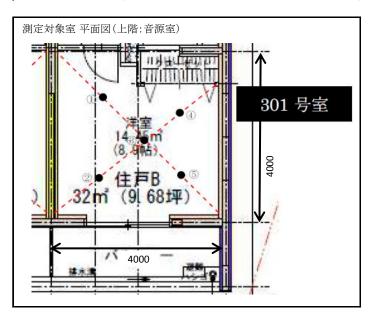
衝撃源		軽量	重量(1)	重量(2)
	四手 你	タッピング	タイヤ	ボール
ì	庶音等級	50	60	
	(L数)	(52)	(58)	
	dB(A)	51.0	56.1	
	31.5			
中心周波数 (Hz)	63		81.0	
	125	61.0	62.3	
2数	250	57.8	54.1	
開紙	500	43.7	47.3	
Ź	1k	32.8		
#	2k	19.5		
	4k			
測定年月日		2	2015年3月13日	

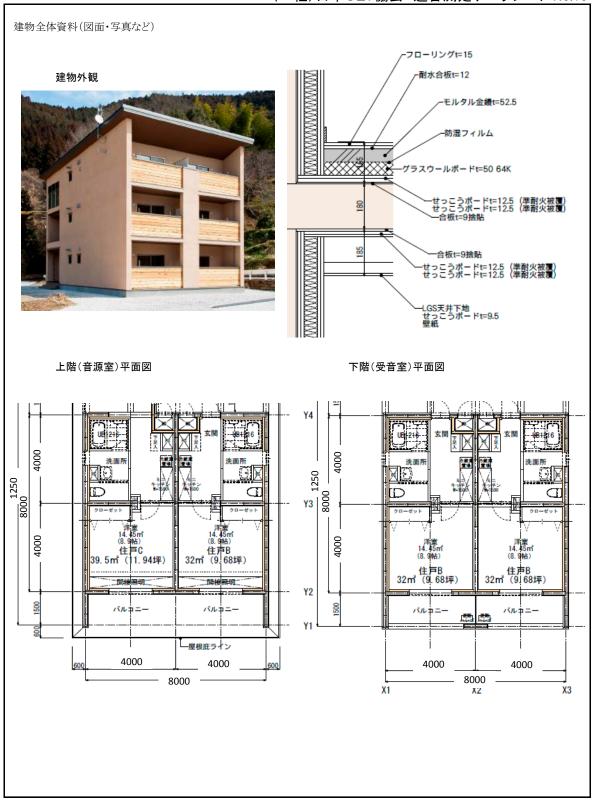


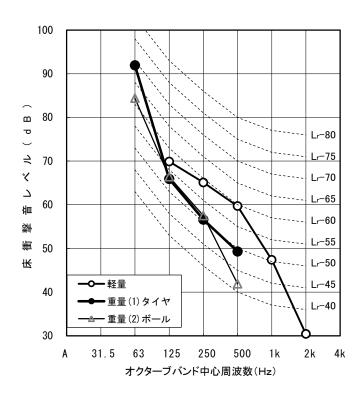


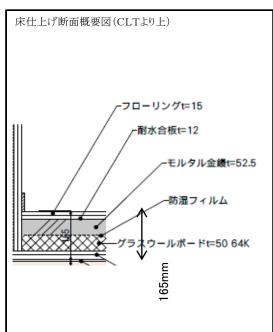


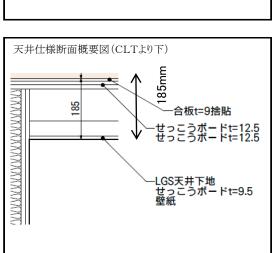
物件名称	真庭木材事業協同組合CLT勝山協同住宅
所在地	岡山県真庭市勝山字中須1884-19
竣工年月日	2015年3月
測定機関	大建工業(株) エコ音響製品部
特記事項など	


整理番号	No.15
物件名	高知おおとよ製材㈱社員寮
対象部位	界床
上階室	301号室洋室
下階室	201号室洋室
CLT床版 (スパン)	厚 180 mm(5層6プライ)
	4000mm × 4000mm
床仕上げ	フローリング15mm
天井仕様	独立二重天井
	軽量 : LL-60
遮音等級	重量 : LH-70
	ボール: LHB-60

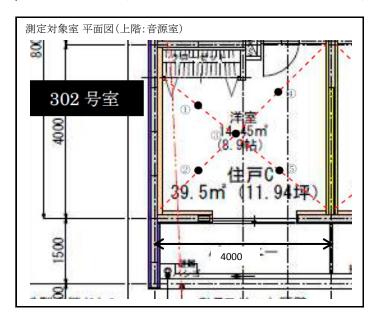


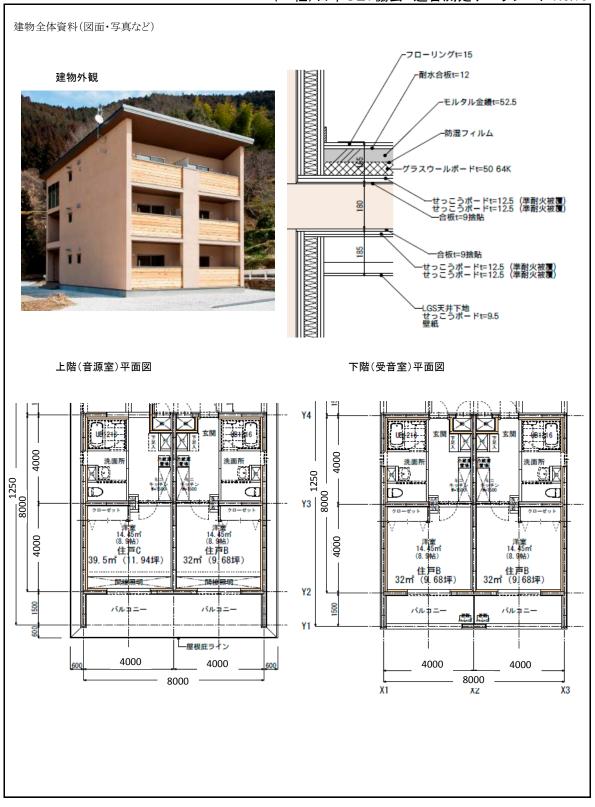

衝撃源		軽量	重量(1)	重量(2)
		タッピング	タイヤ	ボール
ì	庶音等級	60	70	60
	(L数)	(61)	(69)	(60)
	dB(A)	60.0	65.3	57.5
	31.5			
(2	63		91.1	82.2
H)	125	68.0	69.2	63.9
7数	250	66.7	56.3	58.4
中心周波数(Hz)	500	55.7	43.9	38.8
Ź	1k	44.9		
+	2k	28.8		
	4k			
測定年月日				

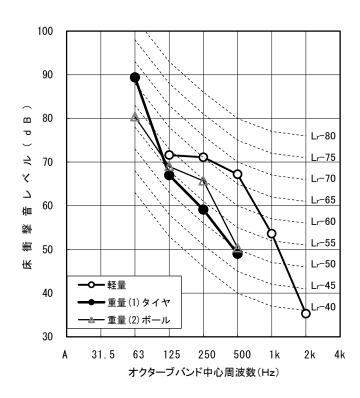


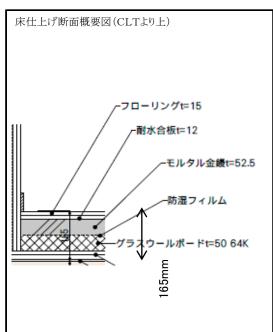


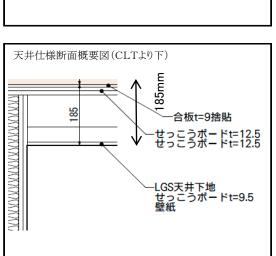
物件名称	高知おおとよ製材株式会社 社員寮
所在地	高知県長岡郡大豊町川口字川口南1103-2
竣工年月日	2014年3月
測定機関	高知県立森林技術センター
特記事項など	


整理番号	No.16	
物件名	高知おおとよ製材㈱社員寮	
対象部位	界床	
上階室	302号室洋室	
下階室	202号室洋室	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	独立二重天井	
	軽量 : LL-60	
遮音等級	重量 : LH-70	
	ボール: LHB-60	

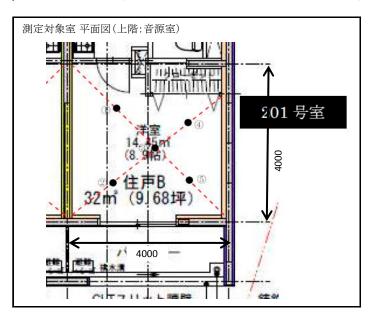


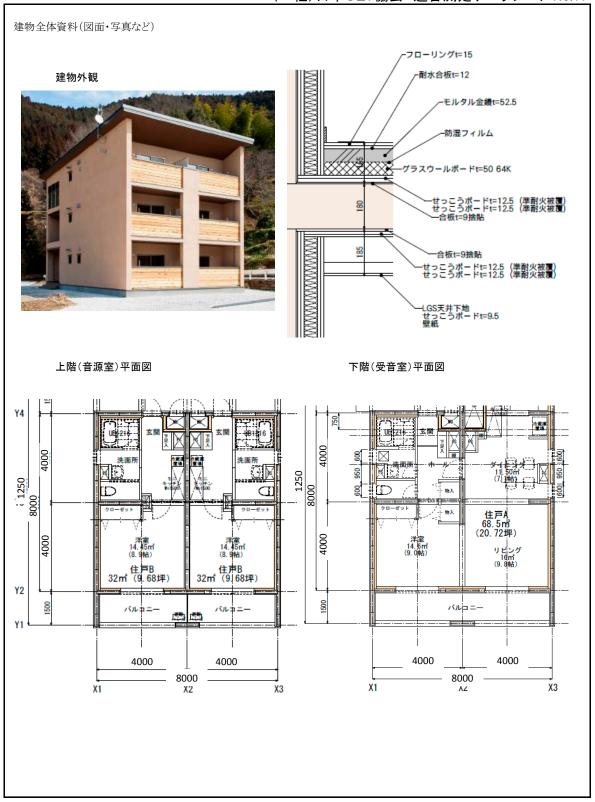

衝撃源		軽量	重量(1)	重量(2)
		タッピング	タイヤ	ボール
j	庶音等級	60	70	60
	(L数)	(60)	(69)	(62)
	dB(A)	60.8	65.9	59.3
	31.5			
$\widehat{}$	63		91.9	84.4
H)	125	69.9	65.9	66.4
7数	250	65.1	56.6	57.5
中心周波数(Hz)	500	59.7	49.3	41.9
Ź	1k	47.4		
+	2k	30.4		
	4k			
測定年月日				



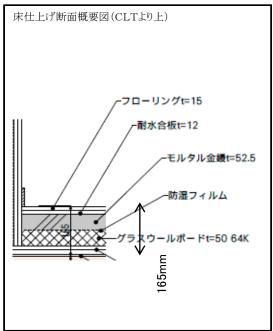


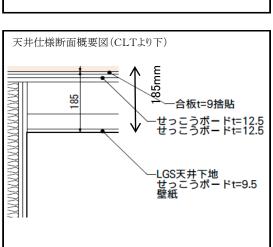
物件名称	高知おおとよ製材株式会社 社員寮
所在地	高知県長岡郡大豊町川口字川口南1103-2
竣工年月日	2014年3月
測定機関	高知県立森林技術センター
特記事項など	


整理番号	No.17	
物件名	高知おおとよ製材㈱社員寮	
対象部位	界床	
上階室	201号室洋室	
下階室	101号室リビング	
CLT床版	厚 180 mm(5層6プライ)	
(スパン)	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	独立二重天井	
	軽量 : LL-70	
遮音等級	重量 : LH-65	
	ボール: LHB-60	

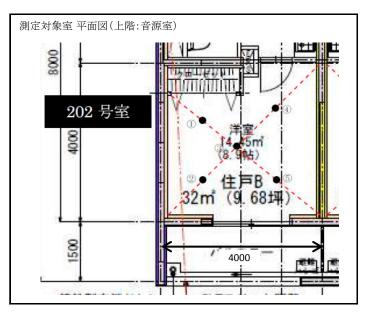


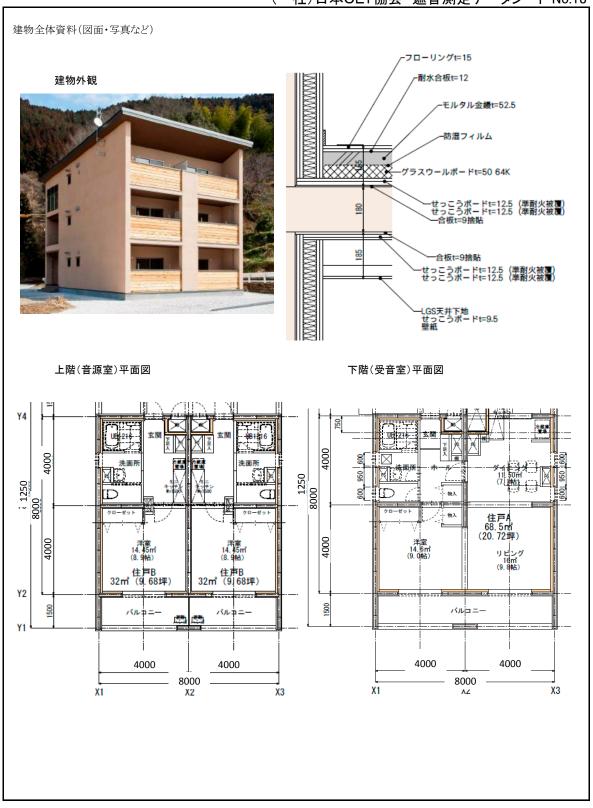
	衝擊源	軽量	重量(1)	重量(2)
	国争你	タッピング	タイヤ	ボール
j	庶音等級	70	65	60
	(L数)	(68)	(67)	(60)
	dB(A)	66.9	63.7	60.1
	31.5			
(Z	63		89.4	80.4
(H	125	71.6	67.0	69.0
2数	250	71.1	59.1	65.7
中心周波数 (Hz)	500	67.2	49.0	50.4
Į	1k	53.6		
1 +	2k	35.3		-
	4k			
測定年月日			•	





物件名称	高知おおとよ製材株式会社 社員寮
所在地	高知県長岡郡大豊町川口字川口南1103-2
竣工年月日	2014年3月
測定機関	高知県立森林技術センター
特記事項など	


整理番号	No.18	
物件名	高知おおとよ製材㈱社員寮	
対象部位	界床	
上階室	202号室洋室	
下階室	101号室洋室	
CLT床版 (スパン)	厚 180 mm(5層6プライ)	
	4000mm × 4000mm	
床仕上げ	フローリング15mm	
天井仕様	独立二重天井	
	軽量 : LL-70	
遮音等級	重量 : LH-70	
	ボール: LHB-60	



衝撃源		軽量	重量(1)	重量(2)
	判事 你	タッピング	タイヤ	ボール
ì	庶音等級	70	70	60
	(L数)	(68)	(68)	(58)
	dB(A)	66.8	64.5	58.7
	31.5			
(Z	63		90.3	80.7
(H)	125	71.7	66.4	68.5
中心周波数(Hz)	250	70.5	59.1	62.5
司	500	67.3	49.8	48.5
Ź	1k	54.6		
+	2k	35.9		
4k				
測	定年月日			

物件名称	高知おおとよ製材株式会社 社員寮
所在地	高知県長岡郡大豊町川口字川口南1103-2
竣工年月日	2014年3月
測定機関	高知県立森林技術センター
特記事項など	

3章 歩行振動

3.0 目的

本章では、CLT を床版に用いた際の歩行振動性状について検討した。CLT 建築物では、床梁を省略して CLT を架け渡す工法(以下、CLT 床)が主流になると思われるが、平成 26 年度に(一社)日本 CLT 協会において実施された、「平成 25 年度補正林野庁委託事業『床板として CLT を使用する枠組壁工法建築物の開発』(以下、昨年度事業)」において、CLT 床の振動特性は鉄骨造や RC 造の比較的柔らかい床に近いことが分かっており、他の木造床と比べても床歩行振動を認知しやすく、気になり度が高い傾向にある。そのため、本章では CLT 床の歩行振動性状について実験的・解析的に検討し、床振動の軽減対策を検討すると共に、CLT 床に適した施工法の提案や、床振動対策用のスパン表を作成することを最終的な目的としている。

平成27年度は、図3.1に示すフローに沿って検討を進めることとした。

具体的な検討内容としては以下の各段階記述の通りであり、今年度の進捗は③段階まで進める 事が出来た。特に今年度成果として特筆すべき点は、CLT 床の歩行振動性状に関し、限定的では あるが解析モデルを構築でき検証できた事であり、次年度に向けての貴重な足掛かりが得られた。

- ①実際に建設された CLT 建築物 (協同組合オホーツクウッドピア内の CLT セミナーハウス) の歩行振動試験を行うことで、固有振動数の計測、固有モードの把握、CLT 床面内の強軸・弱軸方向への振動伝播性状の把握、減衰性状の把握を行い、同時に 100kg の錘を載せる静的載荷試験も実施して CLT 床の静的変形性状を把握する。また、既往の研究で提示されている"人体感覚ー評価関係"と比較することで、CLT 床の居住性評価も行う。
- ②次に、実大 CLT 床試験体(森林総合研究所)を用いて歩行振動試験を行うことで、CLT 床の端部接合方法や上載荷重による端部固定度の違いが CLT 床の振動性状および静的変形性状に及ぼす影響を実験的に検討する。
- ③これらの実験データを元に CLT 床構面のモデル化を行い、有限要素法を用いた解析を行う。材料定数として用いるヤング係数や木材のポアソン比に相当する定数については、既往の実験データ等を元に試行錯誤的に数値を代入する。実験値と解析値の比較検証は、固有振動数や固有モード、100kg 載荷時の静的変形量について行い、実態に即した解析モデルを設定する。さらに、その解析モデルを使って歩行振動時の応答加速度についても検証を行い、加速度波形や振幅の比較を行うことで、解析モデルの妥当性を検証する。
- ④最後に、スパン表作成のための予備的な検討として、実験を行った床を対象に材料定数を変化させたパラメトリックスタディを試行的に行い、固有振動数等の特性値の比較を行う。詳細なスパン表については、次年度に端部固定度の影響やスプライン接合の影響等を検証したあとで詳細なパラメトリックスタディを行い、各種仕様に応じたスパン表を作成する予定である。

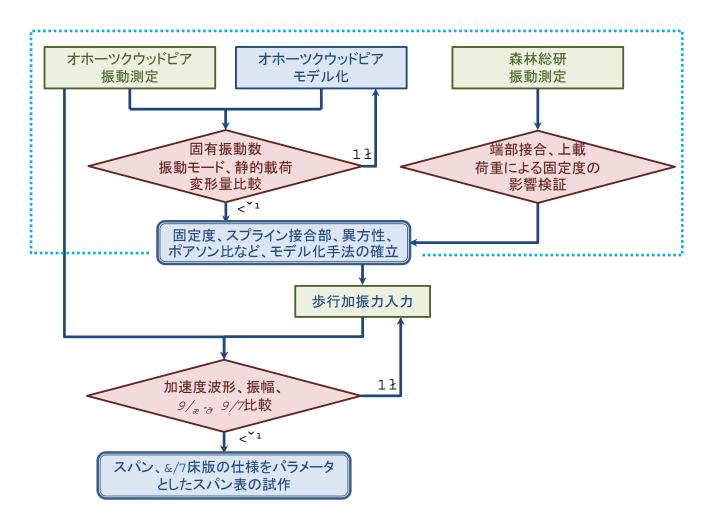


図3.1 歩行振動に関する検討フロー

3.1 実物件の測定: CLT セミナーハウス歩行振動試験

3.1.1 測定目的

昨年度実施した試験体床レベル等の測定から CLT 床の歩行振動を検討しておく必要を把握した。 そこで本年度は、まだ数少ない実用建物での CLT 床版の振動特性を確認し、物理的感覚的特徴を 把握するとともに、試験体床レベル等の測定が有効かどうかの比較検証、並びに解析による振動 予測・対策スパン表作成に向けた貴重なデータを得る事を目的とした。

なお CLT 床は一般の木造床よりは剛性が高く、S・RC 造事務所床等の歩行振動性状に近似している事が明らかになっている。そのため本測定の分析により CLT 床の歩行振動性能値を抽出し、これまでの研究で提示されている人体感覚-評価関係と照合し居住性評価を行う事も目的とする。

3.1.2 測定概要

日 程:平成27年(2015年)9月15日-17日

場 所:北海道常呂郡留辺蘂町旭11番地

協同組合オホーツクウッドピア CLT セミナーハウス

測定者:東京工業大学横山研究室 横山教授、他学生4名

立合者: 有馬孝禮委員長、歩行振動 WG メンバー 他

試験:セミナーハウス内二階床の固有値測定(固有振動数、減衰時間、静的載荷重時

変形)、歩行振動特性測定(歩行振動たわみ)、及び官能検査

行 程:初日(15日)現地へ移動後、測定建物内1・2階セミナールーム内測定機器設置

二日目(16日)終日実測、三日目(17日)現地より退去

写真 3.1 CLT セミナーハウス 歩行振動測定の様子

3.1.3 測定計画

(1) 測定対象

測定に用いた床は、道産カラマツ材ラミナを用いた 7 層 7 プライの厚 210 mm CLT で、スパン 4.55 m、桁行(有効)9.0mの床版で、パネル割付は図 3.2 のように不規則である。また、床版接合の特徴として、図 3.3 のようにパネル間接合に片面構造用合板厚 30 mmの上片面スプラインを用い、さらにその上に意匠でカラマツ製材を張り付けている。また床端部の壁との接合には、接合具を用いず、L型接合金物を使用している。

図 3.2 床パネル割付と測定範囲、測定点

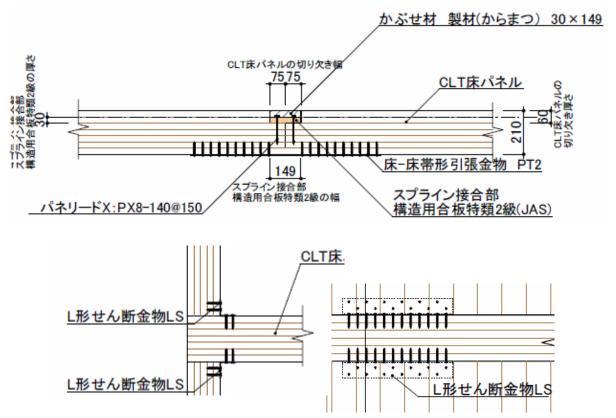


図3.3 床パネル間接合と壁-床接合

(2) 測定項目

測定項目については前年度測定との比較を行うため、同じ手法・測定項目を基本とすることとした。まず図 3.2 の床測定範囲内に測定点をグリッド状に配置し、表 3.1 の様に測定項目と測定条件を設けた。

即ちスパン方向、桁行方向について、1) それぞれの条件での固有値(固有振動数、減衰時間)、2) 静的たわみ特性(微小荷重 100kgf たわみ)、3) 歩行振動測定、4) 官能検査を行った。ただし、実際の測定では、現場の実状に応じて、加振点、載荷点、歩行路、測定点などを適宜変更、再設定した。詳細は、(3) 試験方法にて述べる。

表 1 測定項目一覧

I-1:振動測定(梁間方向)

測定項目	床上人数	加振点, 載荷点, 歩行路	測定点
	0人	加振点C	C, Y ₁ , Y ₂ , Y ₃
固有振動数,減衰時間	1人Y₁	加振点C	C, Y ₁ , Y ₂ , Y ₃
回有旅勤效, 减表时间	2人Y ₁ , Y ₁ '	加振点C	C, Y ₁ , Y ₂ , Y ₃
	0人	加振点Yi	C, Y ₁ , Y ₂ , Y ₃
100kgf静的載荷	0人	載荷点C	C, Y ₁ , Y ₂ , Y ₃
「OOKgi 青井口ソ車以口」	0人	載荷点Yi	C, Y ₁ , Y ₂ , Y ₃
歩行振動測定	0人	步行路X	C, Y ₁ , Y ₂ , Y ₃
少11100到例足	1人Y ₁	步行路X	C, Y ₁ , Y ₂ , Y ₃

I-2:振動測定(桁行方向)

測定採況	床上人数	加振点, 載荷点, 歩行路	測定点
	0人	加振点C	C, X1, X2, X3
固有振動数, 減衰時間	1人Xi	加振点C	C, X1, X2, X3
回有旅勤效,减衰时间	2人X ₁ , X ₁ '	加振点C	C, X ₁ , X ₂ , X ₃
	0人	加振点Xi	C, X1, X2, X3
100kgf静的載荷	0人	載荷点C	C, X1, X2, X3
TOOKET 用于自立单文1中J	0人	載荷点Xi	C, X ₁ , X ₂ , X ₃
华 年 香 測 ウ	0人	步行路Y	C, X ₁ , X ₂ , X ₃
步行振動測定	1人X ₁	步行路Y	C, X1, X2, X3

Ⅱ:官能検査

検査状況 検査項目	床上人数	歩行路
認知大きさ度合い,	1人(検査員)Y ₁	步行路X
気になり度合い	1人(検査員)X ₁	步行路Y

(3) 試験方法

各試験方法は、各測定項目につき以下の通りとした。

1) 固有振動数、減衰時間測定(ハンマー加振)

長尺棒先端に取り付けたハンマーで加振点を打撃加振し、CLT 床版上に高感度加速度ピックアップを取付け、時刻歴応答加速度を計測する方法で行った。また CLT 床版上の加振点付近に受振点を設け、無人、有人(1名、2名)の条件変化を与え測定した。測定後 FFT 分析により固有振動数および減衰時間を求めた。図 3.4 は、ハンマー加振試験パターンを示す。上図は無人でスパン方向に展開した加速度ピックアップを桁行側に盛替えを行う場合、中図は加速度計はそのままで有人載荷を変化させた場合、下図は無人で加速度計と加振点を桁行方向に移動した場合を示す。

また図3.5は、FFT 分析により応答加速度の減衰に対応した減衰時間の取り方を示す。

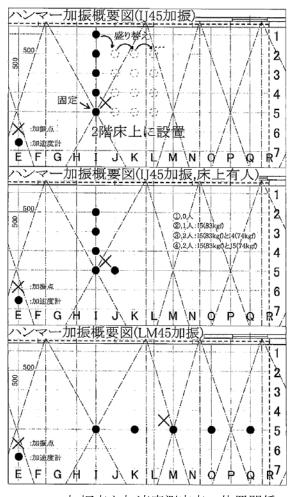


図3.4 ハンマー加振点と加速度測定点の位置関係

図3.5 時刻歴応答加速度の減衰の読み取りの例

2) 100kgf 静的載荷

図3.6に示すように、20kgf 錘を5回に分けて載荷点に積み重ねる方法で徐々に100kgf まで載荷し、CLT 床版の微小たわみを1階天井に設置した高感度レーザー変位計群(スパン方向変位計は盛り替え移動、桁行方向変位計は位置固定)で測定する方法で行ない、強軸弱軸各方向への剛性異方性、連続性の評価を行った。

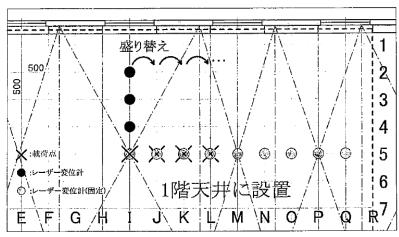


図 3.6 100kgf 載荷点と変位計の位置関係

3) 歩行振動測定

図 3.7 に示すように CLT 床版上中央に特定者の人重量を載荷した状態で、スパン方向、桁行方向に歩行者が歩行した場合の時刻歴応答加速度を測定する方法で行った。測定後、各性能値を、東京工業大学横山研究室がこれまでの研究で提示している性能値と官能尺度(認知度と気になり度)の対応図にプロットし性能評価を行った。

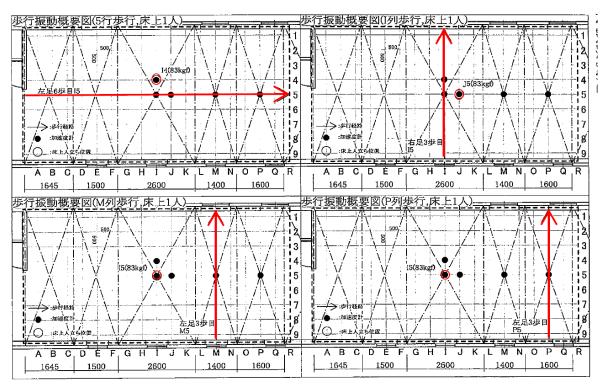


図 3.7 歩行振動測定のパターン

4) 官能検査

3) と同じ試験方法であるが、図 3.8 に示すように特定者の代わりに複数の検査員を受振者として交替配置し、東京工業大学横山研究室が、これまでの研究で提示している官能検査尺度(表 3.2) を用いたアンケート形式による性能評価を行った。これにより 3) で行った歩行振動測定評価結果が、実際の人の官能と整合しているかどうかの検証を行った。

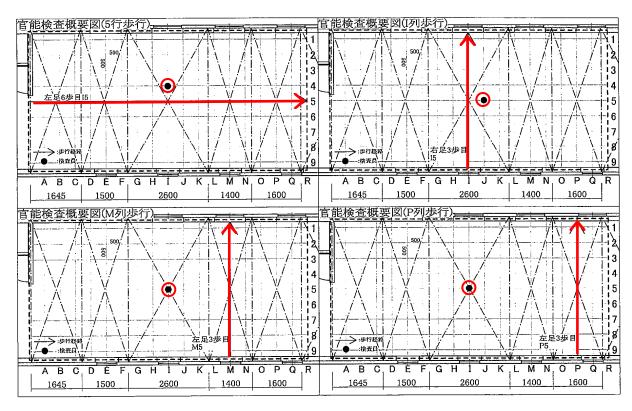


図3.8 官能検査時の検査員と歩行者の位置関係

表 3.2 官能検査尺度

構成する尺度	認知大きさ尺度	気になり具合評価尺度
尺度構成手法	系列範ちゅう法	
質問事項	住居内で、周りを入が歩行した際 ら、この振動は	に、このような床振動を感じた
判断範ちゅう	①非常に大きく感じる ②やや大きく感じる ③はっきり気付く ④かすかに気付く ⑤気付くか気付かないかの境界 ⑥ほとんど気付かない ⑦全く気付かない	①非常に気になる ②・・・・・・・ ③かなり気になる ④・・・・・・・ ⑤やや気になる ⑥・・・・・・・ ⑦全く気にならない
検査試料	実棟床1種×歩行路4種=4種の	
歩行者	成人男子(年齡23歲, 体重70kg),	歩調2Hz, 履物くつ下
検査員	成人男女14名(年齡22~61歲, 体	重45~92kg)
受振姿勢	立位	
履物	くつ下	

3.1.4 測定結果

1) 固有振動数、減衰時間測定(ハンマー加振) 結果

本測定物件の床では 22.0、25.5、32.0Hz の 3 次モードまで固有振動数が確認された (図 3.9) が、人体荷重が固有振動数に与える影響は殆ど無視できる事が判った。

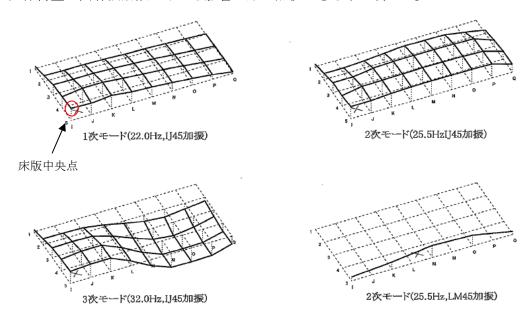
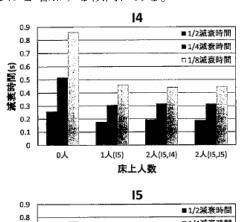
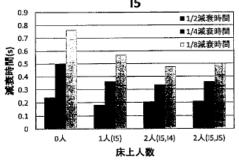



図 3.9 北見セミナーハウス 2 階床の中央点 (I5) から 1/4 面の固有振動モード


一方振動加速度の減衰時間は、図 3.10 に示すように明らかに人荷重載荷の有無の影響が大きい事が確認でき、数量の多少ではなく、また人体は有効な振動吸収体である事が確認された。

また、表 3.3 に示すように減衰定数も有人載荷の減衰定数は大きく(減衰は早く)、人数が増えるほど増加する傾向にある。

ハンマー加振結果(減衰時間の比較)

加振点:IJ45 I5:83kgf I4,J5:74kgf

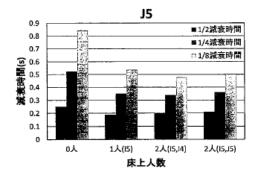


図3.10 振動加速度の載荷条件減衰時間比較

表 3.3 加振条件毎の平均減衰定数比較

	減衰定数(%) 加振点IJ45		2回目	3回目	4回目	5回目	6回目	7回目	平均
	15	2.17	2.64	2.89	2,83	2.71	-	_	2.65
床上0人	14	2.04	2.18	2.18	2.26	2,26	-		2.18
	J5	2.14	2.40	2.49	2.28	2.42	_	-	2.35
床上1人	15	4.34	4.23	4.03	4.06	4.05	_		4.14
(I5,83kgf)	14	3.97	4.00	3.89	4.19	3.91		-	3.99
	J5	3.16	3.56	3.28	3.72	3.61	-		3.46
床上2人	15			4.74	5.39	5.10	5.03	5.23	5.10
(15,83kgf,	I4	_	-	4.59	5.63	4.79	5.30	5.01	5.06
14.74kgf)	J5			3.78	4.59	4.01	4.19	3.26	3.97
床上2人	15	-	5.35	5.21	5.73	4.79	5.19	5.69	5.33
(15,83kgf,	14	-	1.89	4.96	5.04	4,98	4.90	5.03	4.47
J5,74kgf)	J5	-	4.07	3.71	4.55	4.19	4.61	4.17	4.22

2) 100kgf 静的載荷結果

本測定物件の静的載荷の特徴として、強軸方向(スパン方向)の変形は緩やかで、床端部はピン状態と考えられた。一方、桁行方向の変形は、パネル継ぎ目付近に載荷すると一時的に連続性が弱くなり変形増加した。

静的載荷による強軸方向、弱軸方向への変形影響は同程度(同心円的)の様である。また、静 的載荷試験ではパネル継ぎ目が一体化していないと見られたのに対し、動的荷重(ハンマー加振) 試験モード図では継ぎ目影響が見られず、一体化しているように見られた。(図 3.11)

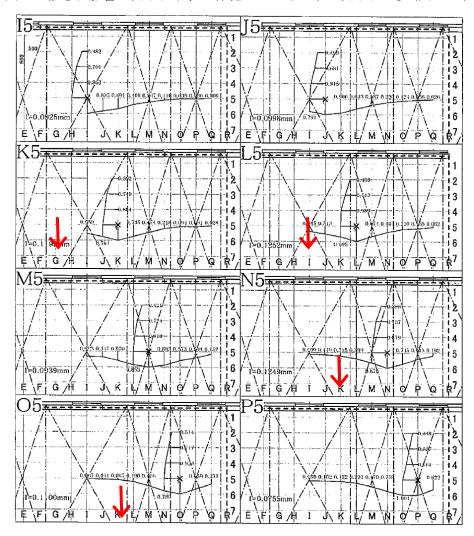


図 3.11 100kgf 静的載荷時の変形図

図3.12 は、強軸スパン方向変位を各測点直下のレーザー変位計測値で表示したものである。これによれば強軸方向でもパネル継ぎ目付近は、パネル中央部より変形し易くなっている。

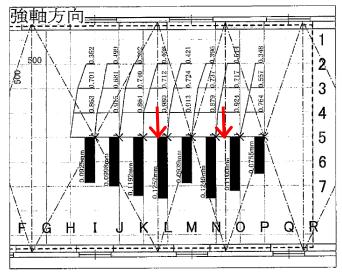


図 3.12 強軸 (スパン) 方向の静的載荷時の変位量比較

3) 歩行振動測定結果

本測定物件の測定結果を分析した性能値を、東京工業大学横山研究室で蓄積してきた性能値と 官能尺度(「認知度」と「気になり度」)の対応図にプロットすると図 3.13 のようになった。

これにより、本測定物件の床の振動性能は、認知度で「③はっきり気付く」、気になり度で「④かなり気になる~やや気になる」と評価した。

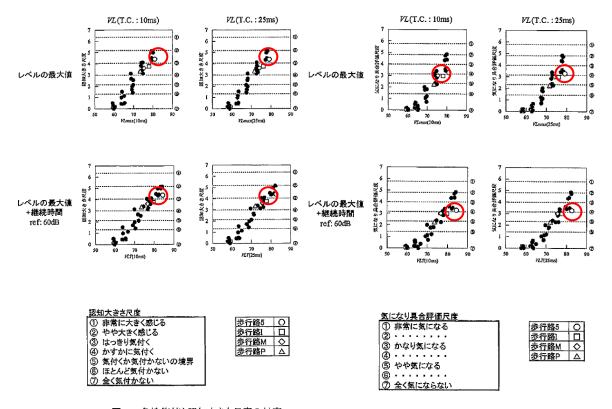


図 15 各性能値と認知大きさ尺度の対応

図 16 各性能値と気になり具合評価尺度の対応

図 3.13 歩行振動測定結果評価

4) 官能検査結果

3) の測定に対応する形で複数の検査員を被験者とする官能試験を行った。住居想定、事務所想定の 2 パターンについて、図 3. 14 に示す「認知大きさ尺度」と「気になり具合尺度」によるアンケート評価を行った。結果として 2 階床振動の認知度は、両方のパターン共「②やや大きく感じる~③はっきり気付く」となり、気になり度も「③かなり気になる~④やや気になる」となり、振動測定結果から得た性能値とほぼ整合する結果となった。

認知大きさ尺度と気になり具合評価尺度の対応

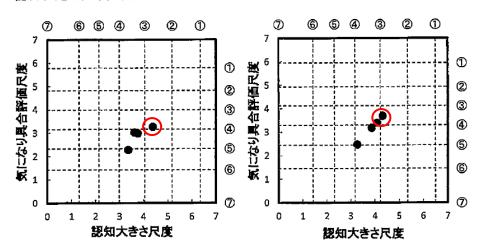


図3.14 住居を想定した場合(左)と事務所を想定した場合(右) の認知大きさ尺度と気になり具合評価尺度の関係

3.1.5 まとめ

動的測定の結果として、

- ・北見ウッドピアの試験体床は22.0、25.5、32.0Hzの3次モードまでの固有振動数を確認した。
- ・振動減衰には人体は有効な振動吸収体である事、人荷重の有無の影響が大きい事が確認された。
- ・減衰定数については有人載荷は大きく(減衰は早く)、人数が増えるほど増加する傾向にある。 静的測定の結果として、
- ・強軸方向(スパン方向)に緩やかに変形しており端部はピン状態と考えられる。
- ・桁行方向はパネル継ぎ目付近で一時的に連続性が弱くなり変形増加する。
- ・強軸方向、弱軸方向への変形影響は同様(同心円状)である。
- 静的載荷試験ではパネル継ぎ目で一体性が失われている(動的試験と異なる)。
- ・強軸方向でもパネル継ぎ目付近では変形し易い。

歩行振動測定の結果として、

・セミナーハウス床の振動性能は、認知度で「③はっきり気付く」、気になり度で「④かなり気になる~やや気になる」の範疇と評価された。

官能検査の結果として、

- ・床振動認知度は、「②やや大きく感じる~③はっきり気付く」、気になり度も「③かなり気になる~④やや気になる」となり歩行振動測定の結果評価とほぼ整合する結果となった。
- ・これまでに行った CLT 床によける歩行振動測定結果を一覧比較すると表 3.4 のように整理される (勝どきフーダーズスタジオについては 3.2 で述べる)。

		オホーツク ウッドピア	勝どきフーダーズ スタジオ	森林総研1	森林総研2
スパン(n	ım)	4550	4600	4000	5500
床CLT厚	(mm)	210(7層)	210(7層)	150(5層)	210(7層)
	(気乾密度(g/cm^3))	北海道産カラマツ(0.496)	九州産スギ(0.38※)		
壁体厚さ	(mm)	150(CLT)	150(CLT)	90(CLT)	90(CLT)
壁−床の	接合	U字金物、L字金物	ネジ千鳥固定(斜め打ち)		
燕考		実棟床	実棟床	ステージ床	ステージ床
00kgf	静的載荷	15	K点	K点	K点
中心点象	设荷時変位(mm)	0.093	0.178	0.360	0.234
固有振	動数				
次固有	振動数(Hz)	22.0	20.0	23.5	19.0
次固有	振動数(Hz)	25.5			
次固有	振動数(Hz)	32.0			
成衰出	計問	15	K点	K点	K点
	1/2減賽時間(s)	0.241	0.088	0,333	0.363_
大0人	1/4減衰時間(s)	0.496	0.148	0.516	0.647
	1/8減衰時間(s)	0.765	0.246	0.701	0,878
	1/2減衰時間(s)	0,183	0.080	0.193	0.206
末上1人	1/4減衰時間(s)	0.362	0.140	0.286	0.357
	1/8減疫時間(s)	0,572	0.211	0.385	0.514
	1/2減賽時間(s)	0.207	0.063	0,127	0.180
末上2人	1/4減衰時間(s)	0.338	0.114	0.196	0.249
	1/8減衰時間(s)	0.478	0.168	0.245	0.379
官能核	食查結果(住居)	5行歩行, 14受擾	步行路A, J点受摄	步行路A, J点受援	步行路A, J点受摄
3知大き	た尺度	2)~(3)	(3)~(4)	3~4	2~3
気になり	具合評価尺度	③~④	4 ~(5)	@~ \$	②~③

表 3.4 床歩行振動測定·評価結果一覧

減衰時間の長短が評価尺度に寄与する事は、これまでの経験から予想できるが、表 3.4 からは減衰性能が類似するにも係らず静的荷重による微小変形性能は全く異なる結果である。考えられるパラメータ(荷重や材質、壁床端部接合、パネル間接合など)について議論を行った結果、北見と森林総研の相違の原因として大きい要因と予想する壁床端部の接合に関し、同質の CLT 材料による床パネル端部の固定度(荷重の大小や接合方法など)に関する端部固定度評価試験をまず行う必要があると結論付けた。

3.1.6 今後の方針

- 1) 昨年度事業で実施した CLT 床試験体を再現し、荷端部載荷荷重や接合具・金物類の盛替えによる床端部の固定度を変化させることで、これまで実施した測定条件を再現する事を目論見た振動特性の変化を調べる試験を行う。
- 2) 本件測定物件の測定データを基に、有限要素解析により同測定結果を再現できる構造モデル (北見モデル) を構築する。
- 3) 建築学会の新基準(固有振動数と静たわみより誘導する評価基準、あるいは振動レベルの最大値に振動の継続時間の要因を加味した新性能値)を適用できるシミュレーションを行い、 その結果からスパン表資料を作成する。

3.2 試験体での再現試験:森林総合研究所

3.2.1 目的

昨年度事業の中で、国立研究開発法人森林総合研究所において、CLT 床試験体を対象とし て振動特性を把握するための実験を行った。この CLT 床は実建物に組み込まれたものでは なく、1階の壁を模擬した枠組壁工法の壁または厚さ90mmのCLT壁の上にCLT床を載せ、 床から壁にビス留めしたものであった。一方、実建物を対象とした測定事例についてもこ れまで蓄積がなく、勝どきフーダーズスタジオ(以下、単に勝どきと称す)を対象に初め て振動特性を把握するための実験を行った。勝どきの床には5層7プライでスパン4.6mの スギ CLT パネルが用いられていた。勝どきの床の固有振動数は 20Hz で、森林総合研究所で 実施した 4m スパンの床の固有振動数 23.5Hz や 5m スパンの床の振動数 19Hz とそれほど大 きくは違わなかったが、1/2 減衰時間は勝どきの床の方が、森林総合研究所の床に比べて約 1/4 と小さかった。さらに実建物の測定事例を増やすために、協同組合オホーツクウッドピ ア内 CTL セミナーハウス(以下、単に北見と称す)の床の振動特性を測定する機会を得た。 北見の床には7層7プライでスパン 4.55m のカラマツ CLT パネルが用いられていた。北見 の床の一次固有振動数は 22Hz であり、他の測定事例と大きな差はなかったが、1/2 減衰時 間は勝どきの 3 倍近くあった。これらの減衰時間の差が何によって生じているかについて 議論した結果、床端部の固定度の違いが一つの要因として挙げられた。そこで、同研究所 において H26 年度に試験体に使用した CLT 壁とスパン 5.5m、5 層 7 プライの CLT 床を再利 用して新しい試験体を作成し、床端部の接合部仕様や端部に載せる荷重を変えることによ り床端部の固定度を変化させ、床の振動特性を把握するための実験を行った。

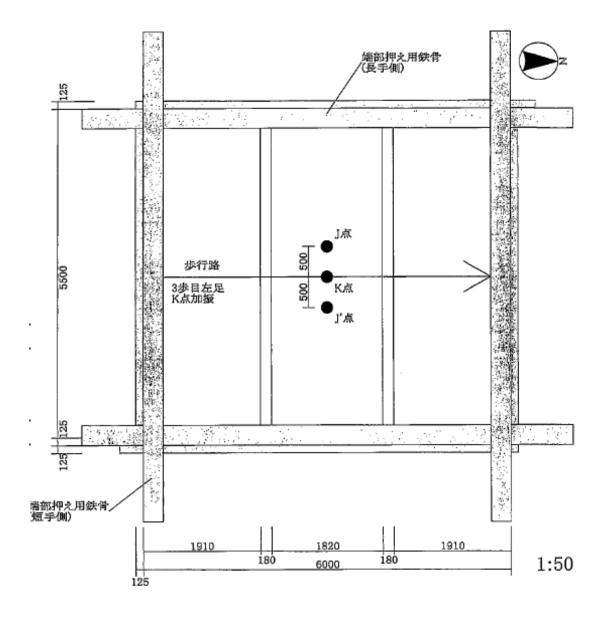
3.2.2 実験場所

国立研究開発法人 森林総合研究所 屋外実験場 (茨城県つくば市)

3.2.3 実験の日程

平成 27 年 11 月 27 日 鋼製基礎組立、30 日 試験体組立 12 月 18 日 おもり載荷、19 日 実験、おもり除荷

3.2.4 試験体


図 3. 15 に試験体の概要を示す。北見モデル、勝どき + α モデル、森林総研 + α モデルは 長手方向に 1600kg、短手方向に 1410kg のおもりを載せた。また、勝どきモデルには長手方向に 1000kg、短手方向に 900kg のおもりを載せた。

3.2.5 試験方法

次の手順で実施した(図3.16~図3.51参照)。

- 1) 北見型再現積載(北見モデル)
 - ①動的加振試験(ハンマー加振)
 - a. K点加振
 - b. J点に1人乗って K 点加振

- c. J点に1人, J'点にもう1人乗ってK点加振
- d. J点加振
- ②歩行振動試験
 - a. 歩行路歩行
 - b. J点に1人乗って歩行者歩行
- ③静的載荷試験
 - a. K点載荷
 - b. J点載荷
- 2) 勝どき型再現積載 (勝どきモデル)
 - 1. と同じ順序で8項目
- 3) 勝どき型 $+\alpha$ (勝どき $+\alpha$ モデル)
 - 1. と同じ順序で8項目
- 4) 森林総研型 $+\alpha$ (森林総研 $+\alpha$ モデル)
 - 1. と同じ順序で8項目

K点:加振点 J点:受振点 この2点の裏側に光学変位計,加速度計を設置。

図 3.15 試験体概要図

図 3.16 CLT 床板 (5.5m×4m、5層7プライ)

図 3.17 CLT 壁 (CLT、3 層 3 プライ)

図 3.18 5.5m (強軸方向) ×6m (弱軸 方向) の床構面を再現

図 3.19 壁は土台に斜めビス打ちで固 定

図3.20 壁のコーナー部分はビス平打 ち

図 3.21 CLT 壁どうしの接合は ビス斜め打ち

図 3.22 CLT 床版 (5.5m×2m) 1 枚目を 壁に載せる

図 3.23 CLT 床版 (5.5m×2m) 2 枚目を 壁に載せる

図 3.24 スプライン (28mm 厚構造用合 板) をビス留め

図 3.25 404 材を CLT 床版にビス留め

図 3.26 北見モデル:L 形金物を 404 材と CLT 床版にビス留め

図 3.27 北見モデル: L 形金物を CLT 床版と CLT 壁にビス留め

図 3.28 北見モデル:CLT 床版どうしを 帯金物でビス留め

図3.29 北見モデル:測定準備風景 (1)

図3.30 北見モデル:測定準備風景 (2)

図3.31 北見モデル:変位計と加速度 計の設置

図 3.32 北見モデル: J 点に 1 人乗って 図 3.33 北見モデル: J 点に 1 人、J´ K 点加振

点にもう1人乗ってK点加振

図 3.34 北見モデル:歩行路歩行

図 3.35 北見モデル: J 点に 1 人乗って 歩行者歩行

図 3.36 北見モデル:K 点載荷(0.98kN)

図 3.37 404 材と L 形金物を外す

図 3.38 勝どきモデル: CLT 床版にビス 平打ち

図 3.39 勝どきモデル:404 材をビス留め

図 3.40 勝どきモデル: K 点加振

図 3.41 勝どきモデル:J点に1人乗っ て歩行者歩行

図 3.42 勝どきモデル: K 点載荷

図 3.43 勝どき $+\alpha$ モデル: K 点加振

図 3.44 勝どき $+ \alpha$ モデル: J 点に 1 人乗って K 点加振

図 3.45 勝どき $+ \alpha$ モデル: J点に 1 人、J 点にもう 1 人乗って K 点加振

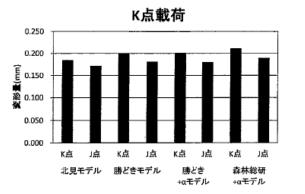
図 3.46 勝どき + α モデル: 歩行路歩

図 3.48 森林総研 $+\alpha$ モデル: 床から 壁へ斜めビス留め

図 3.50 森林総研+αモデル:404 材を ビス留め

図 3.47 404 材を取り外す

図 3.49 森林総研 $+ \alpha$ モデル: 床から 壁へ平打ちしていたビスを取りはずす


図 3.51 森林総研+ α モデル: K 点加振

3.2.6 試験結果

1) 0.98kN (100kgf) 静的載荷試験

図 3.52 に、各モデルの K 点、J 点にそれぞれ 0.98kN(100kgf)載荷したときの K 点、J 点の変位を示す。

変位(mm)	北見モデル		勝どき	モデル	勝どき +αモデル		森林総研 +αモデル	
	K点	J点	K点	J点	K点	J点	K点	J点
K点載荷	0.185	0.172	0.201	0.182	0.202	0.181	0.212	0.190
J点載荷	0.167	0.177	0.179	0.182	0.192	0.201	0.198	0.199

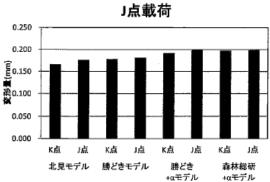


図 3.52 0.98kN (100kgf)静的載荷試験結果

表 3.5 に各モデルの固有振動数を、表 3.6 に各モデルの減衰定数を、表 3.7~8 に各モデルの減衰時間を示す。

表 3.5 各モデルの固有振動数

北見モデル			勝どきモデ	ル		勝どき+α Ŧ	Eデル		森林総研+	αモデ	ル
K点加振	K点	J点	K点加振	KĀ	JÁ	K点加振	K点	JÁ	K点加張	K点	J点
1次固有振動数(Hz)	17.00	17,00	1次固有振動数(Hz)	16.00	16.00	1次固有振動数(Hz)	16.50	16.50	1次固有振動数(Hz)	16.00	16.00
3次固有振動数(Hz)	37.50	38.50	3次固有摄動数(Hz)	38.00	38.00	3次固有振動数(Hz)	37.00	37.00	3次固有振動数(Hz)	38.50	38.50
K点加振 J点に受振者1名	K点	J点	K点加振 J点に受振者1名	K点	J点	K点加振 J点に受振者1名	K点	J点	K点加振 J点に受振者1名	KÁ	J点
1次固有振動数(Hz)	17.00	17.00	1次固有振動数(Hz)	16.00	16.00	1次固有振動数(Hz)	16.50	16.50	1次固有振動数(Hz)	16.00	16.00
3次固有振勤数(Hz)	39.00	39.00	3次固有振動数(Hz)	38.00	38.00	3次固有振動数(Hz)	37.00	37.00	3次固有振動数(Hz)	38.00	38.00
K点加振 J点に受振者1名 J点に受振者1名	K点	J点	K点加振 J点に受振者1名 J点に受振者1名	K点	点点	K点加振 J点に受振者1名 J点に受振者1名	K点	J点	K点加振 J点に受振者1名 J点に受振者1名	K点	J点
1次固有振動数(Hz)	17.00	17.00	1次固有振動数(Hz)	16.50	16.50	1次固有振動数(Hz)	16,50	16.50	1次固有振動数(Hz)	16.00	16.00
3次固有振動数(Hz)	39.00	39.00	3次固有援動数(Hz)	38.00	38,00	3次固有振動数(Hz)	37.00	37.00	3次固有振動数(Hz)	38.50	38.50
J点加振	KĀ	JĀ	J点加振	K点	J点	J点加振	K点	J点	J点加振	K点	J点
1次固有振動数(Hz)	17.00	17.00	1次固有振動数(Hz)	16,00	16.00	1次固有振動数(Hz)	16,50	16.50	1次固有振動数(Hz)	16.00	16.00
3次固有振動数(Hz)	39.00	39.00	3次固有摄動数(Hz)	38.00	38.00	3次固有振動数(Hz)	37.00	37.00	3次固有振動数(Hz)	38.50	38,00

表 3.6 各モデルの減衰定数

				衣 3.0	合て	プルの佩袞正	一级				
北見モデル						勝どきモデル	レ				
减衰定数(%)	1回目	2回目	3回目	平均	減衰定数(%)	減衰定数(%)		2回目	3回目	平均
K点加振	K点	2,79	3,47	3.35	3.20	K点加振	K点	3.30	4.02	4.23	3,85
N. A. A. A.	J点	3.10	3.37	3.68	3.38	NAME OF THE PARTY	J点	3.43	4.62	4.01	4.02
K点加振	K点	4.59	3.89	3.86	4.11	K点加振	K点	3.59	5.91	4.75	4.75
J点に受張者1名	J点	3.23	3.18	3.64	3.35	J点に受振者1名	J点	3.99	5.49	4.57	4.68
K点加振 J点に受振者1名	K点	4.75	5.43	6.13	5.44	K点加振 J点に受振者1名	K点	4.93	4.74	4.72	4.80
プ点に受振者1名	J点	4.15	5.38	5.46	5.00	J'点に受振者1名	J点	4.66	4.68	4,82	4.72
J点加振	K点	3.67	3,44	3.44	3.52	J点加振	K点	4.24	4.43	3.62	4.10
	J点	3.17	3.31	3.11	3.20	の無が政	り点	4.50	3.28	4.31	4.03
勝どき+αモ	デル	,				森林総研+の	γ モ ラ	∸ル			
減衰定数(%))	1回目	2回目	3回目	平均	減衰定数(%)	108	2回目	3回目	平均	
K点加振	K点	2.90	3,07	3.00	2.99	K点加振	K点	2.27	3.00	2.63	2.63
N. A. D. M. W.	J点	2.95	3.21	3.17	3.11	K.M.Jung	J点	2.59	3.47	2,99	3.02
K点加振	K点	4.83	5.41	5.39	5.21	K点加振	K点	5.55	5.25	5.46	5.42
J点に受振者1名	J点	4.85	5.06	5.48	5.13	J点に受振者1名	点 J	5.67	5.28	5.61	5.52
K点加振 J点に受振者1名	K点	4.66	4.68	4,96	4,77	K点加振 J点に受振者1名	K点	5.83	5.41	5.04	5.43
J点に受振者1名 J点に受振者1名	J点	4.97	4.82	5.59	5.13	J点に受扱者1名	点L	5.66	5,61	5.02	5.43
J点加振	K点	3.67	2.34	2.95	2.98	J点加振	K点	5.91	5.66	5.60	5.72
U無加頭	点	3.78	3.47	2.95	3.40	O ARE AND SIDE	点	5.97	5,68	5.34	5.66

表 3.7 各モデルの減衰時間(1)

北見モデル

40元 エノル								
(/Etnis	10	目	20	18	3匝	1日	平	均
K点加振	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s³)	68.80	61.20	63.60	48.40	69,60	52.00	67.33	53.87
1/2減衰時間(s)	0.318	0.250	0.323	0.285	0.292	0.331	0.311	0.289
1/4減衰時間(s)	0.587	0.551	0.678	0.668	0.653	0,553	0.639	0.591_
1/8減衰時間(s)	0.849	0.900	0.978	1.036	0.962	0.715	0.930	0.884
K点加振	10	目	2[目	3厘]目	平	均
J点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点
ビーク値(cm/s')	54.00	40.80	60.00	52.40	64.80	49,60	59.60	47.60
1/2減衰時間(s)	0.208	0.216	0,212	0.182	0.233	0.229	0.218	0.209
1/4減衰時間(s)	0.354	0.378	0.402	0,364	0.438	0.436	0.398	0.393
1/8減衰時間(s)	0.538	0.528	0.677	0,576	0.618	0.650	0.611	0.585
K点加振	19	目	2回目		3回目		平均	
J点に受振者1名 J'点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点
	IV/mt	- J.III		- Come		- 2011		- JAN.
ピーク値(cm/s²)	52.00	42.40	47.60	34,80	50.40	39.60	50.00	38.93
ピーク値(cm/s')				-11.14	-1,14	, ,		
	52.00	42.40	47.60	34.80	50.40	39.60	50.00	38.93
ピーク値(cm/s') 1/2減衰時間(s)	52.00 0.191	42.40 0.169	47.60 0.173	34.80 0.181	50.40 0.216	39.60 0.182	50.00 0.193	38.93 0.177
ピーク値(cm/s*) 1/2減養時間(s) 1/4減衰時間(s) 1/8減養時間(s)	52.00 0.191 0.338 0.511	42.40 0.169 0.341	47.60 0.173 0.301 0.403	34,80 0.181 0.300	50.40 0.216 0.372 0.483	39.60 0.182 0.326	50.00 0,193 0.337 0.466	38.93 0.177 0.322
ピーク値(cm/s*) 1/2減衰時間(s) 1/4減衰時間(s)	52.00 0.191 0.338 0.511	42.40 0.169 0.341 0.470	47.60 0.173 0.301 0.403	34.80 0.181 0.300 0.403	50.40 0.216 0.372 0.483	39.60 0.182 0.326 0.414	50.00 0,193 0.337 0.466	38.93 0.177 0.322 0.429
ピーク値(cm/s*) 1/2減養時間(s) 1/4減衰時間(s) 1/8減養時間(s)	52.00 0.191 0.338 0.511	42.40 0.169 0.341 0.470	47.60 0.173 0.301 0.403	34.80 0.181 0.300 0.403	50.40 0.216 0.372 0.483	39.60 0.182 0.326 0.414	50.00 0.193 0.337 0.466	38.93 0.177 0.322 0.429
ピーク値(cm/s*) 1/2減賽時間(s) 1/4減賽時間(s) 1/8減賽時間(s) J点加振	52.00 0.191 0.338 0.511 1回 K点	42.40 0.169 0.341 0.470 目	47,60 0.173 0.301 0.403 2厘 K点	34.80 0.181 0.300 0.403 回目	50.40 0216 0.372 0.483 3回 K点	39.60 0.182 0.326 0.414 目	50.00 0.193 0.337 0.466 平	38.93 0.177 0.322 0.429 均
ピーク値(cm/s*) 1/2減衰時間(s) 1/4減衰時間(s) 1/8減衰時間(s) J点加振 ピーク値(cm/s*)	52.00 0.191 0.338 0.511 1回 K点 77.60	42.40 0.169 0.341 0.470 目 J点 55.60	47,60 0.173 0.301 0.403 2厘 K点 71.60	34.80 0.181 0.300 0.403 日 月 月 月 54.00	50.40 0.216 0.372 0.483 3厘 K点 67.20	39.60 0.182 0.326 0.414 目 J点 52.80	50.00 0.193 0.337 0.466 平 K点 72.13	38.93 0.177 0.322 0.429 均 J点

勝どきモデル

K点加振	19	月	2[0	18	3@	目	平	均
八点加致	K点	J点	K点	J点	K点	点	K点	J点
ピーク値(cm/s²)	72.00	53.20	88.80	62.40	80.00	61.20	80.27	58.93
1/2減衰時間(s)	0,232	0.287	0,218	0.224	0.240	0.206	0.230	0.239
1/4減衰時間(s)	0.462	0.498	0.428	0.402	0.490	0.391	0.460	0.430
1/8減衰時間(s)	0.707	0.672	0.805	0.586	0.700	0.602	0.737	0.620
K点加振	10	18	2匝	目	3厘	18	平	却
J点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s*)	80.00	59.20	75.60	62.40	67.20	68.40	74.27	63.33
1/2減衰時間(s)	0.168	0.150	0.162	0.172	0.175	0.151	0.168	0.158
1/4減疫時間(s)	0.292	0.311	0.306	0,301	0.343	0.267	0.314	0.293
1/8減衰時間(s)	0.429	0.413	0.447	0.447	0.519	0.368	0.465	0.409
K点加振	1@	目	2回目		3回目		平均	
J点に受振者1名 J'点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s ⁱ)	48.00	42.00	58.40	45.60	48.00	46.00	51.47	44.53
1/2減衰時間(s)	0,182	0.160	0.181	0.163	0.195	0.120	0.186	0.148
1/4減衰時間(s)	0.332	0.273	0.365	0.323	0.329	0.256	0.342	0.284
1/8減衰時間(s)	0.436	0.395	0.522	0.490	0.442	0.333	0.467	0.406
J点加振	16	18	2	1目	3[自自	平均	
O MANUAR	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s³)	96.00	66,00_	98,00	69,60	92.00	68.00	95,33	67.87
1/2減衰時間(s)	0.178	0.225	0.184	0.176	0.187	0.200	0.183	0.200
1/4減衰時間(s)	0.404	0.460	0.344	0.431	0.376	0,401	0.375	0,431
1/8減衰時間(s)	0.635	0.618	0.560	0.602	0.639	0.640	0.611	0.620

表 3.8 各モデルの減衰時間(2)

勝どき+αモデル

一分とさずはモアル											
K点加振	19	18	2[18	3[目目	7	均			
1 人以加強	K点	J点	K点	J点	K点	J点	K点	J点			
ピーク値(cm/s ^r)	66.00	64.00	77.60	56.00	77.20	61.60	73.60	60.53			
1/2減衰時間(s)	0.292	0.242	0.208	0.231	0.250	0.228	0.250	0.234			
1/4減賽時間(s)	0.552	0.497	0.536	0.476	0.502	0.550	0.530	0.508			
1/8減疫時間(s)	0.753	7.900	0.751	0.794	0.779	0.796	0.761	3.163			
K点加振	15	1回目		18	3[10	平	均			
J点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点			
ピーク値(cm/s')	48.80	42.40	54.40	47.20	58.40	49.60	53.87	46.40			
1/2減衰時間(s)	0.210	0.185	0.209	0.196	0.212	0.200	0.210	0.194			
1/4減衰時間(s)	0.416	0.361	0.378	0.379	0.381	0.382	0.392	0.374			
1/8減衰時間(s)	0.602	0.579	0,481	0.606	0.552	0.533	0.545	0.573			
K点加振	10		20	18	3[13	平	际			
J点に受振者1名 J点に受振者1名	K点	J点	K点	J点	K点	点	K点	J点			
ピーク値(cm/s*)	46,00	34.00	50,80	36.80	51.20	40.80	49.33	37.20			
1/2減衰時間(s)	0.182	0.200	0.182	0.201	0.192	0,200	0.185	0.200			
1/4減衰時間(s)	0.336	0.360	0.341_	0.346	0.358	0.360	0.345	0.355			
1/8減衰時間(s)	0.511	0.489	0.466	0.465	0.514	0.492	0.497	0.482			
J点加振	19	18	20	208		18	平	均			
O AR /M TAR	K点	点し	点 Ki	녛	点 K	J点	点 K	J点			
ピーク値(cm/s ⁻)	70.00	59.20	66.40	53.20	72.00	57.20	69.47	56.53			
1/2減衰時間(s)	0.288	0.253	0.320	0.288	0.348	0.309	0.319	0.283			
1/4減衰時間(s)	0.520	0.467	0.605	0.559	0.607	0.551	0.577	0.526			
1/8減衰時間(s)	0.766	0.732	0.807	0.791	0.827	0.782	0.800	0.768			

<u>森林総研</u>+αモデル

	1回目		25	0 B	316	98	平均	
K点加振	1,5	1111	25	411	- OE		1	- Yel
	K点	J点	K点	J点	K点	J点	K点	J点
ビーク値(cm/s³)	72,40	60.80	82.40	67.20	77.20	57.60	77.33	61.87
1/2減衰時間(s)	0.227	0.202	0.200	0.223	0.229	0.233	0.219	0.219
1/4減衰時間(s)	0.445	0.425	0.395	0.428	0.450	0.491	0.430	0.448
1/8減衰時間(s)	0.583	0.614	0.588	0.615	0.662	0.677	0.611	0.635
K点加摄	15	1 1	20	1	3[18	平	均
J点に受振者1名	K点	り点	K点	J点	K点	J点	K点	J点
ピーク値(cm/si)	71.60	48.40	82.40	53.20	75.20	59.20	76.40	53.60
1/2減衰時間(s)	0.137	0.190	0.158	0.212	0.177	0.166	0.157	0.189
1/4減衰時間(s)	0.284	0.332	0.331	0.357	0.336	0.317	0.317	0.335
1/8減衰時間(s)	0.403	0.449	0.460	0.466	0.506	0.507	0.456	0.474
K点加振	10	18	2回目		3回目		平均	
J点に受振者1名 J点に受振者1名	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s³)	55.60	43.60	60.80	45.20	57.60	44.80	58.00	44.53
1/2減衰時間(s)	0.182	0.161	0.166	0.165	0.179	0.187	0.176	0.171
1/4減衰時間(s)	0.318	0.316	0.297	0.287	0.300	0.331	0.305	0.311_
1/8減衰時間(s)	0.432	0.405	0.389	0.395	0.390	0.502	0.404	0.434
J点加振	1@	I	20	18	3厘		平均	
O AR AN OR	K点	J点	K点	J点	K点	J点	K点	J点
ピーク値(cm/s*)	92.80	63.60	96.80	70.00	62.40	49.20	84.00	60.93
1/2減衰時間(s)	0.194	0.254	0.220	0.222	0.258	0.244	0.224	0.240
1/4減賽時間(s)	0.395	0.448	0.429	0.441	0.458	0.443	0.427	0.444
1/8減衰時間(s)	0.668	0.684	0.672	0.733	0.797	0.853	0.712	0.757

表 3.9 に各モデルの各種物理量を比較した結果を示す。

表 3.9 各モデルの各種物理量を比較した結果

			1回目	2回目	3回目	4回目	5回目	平均
	VLmax	t.c.10ms	84.24	82.38	85,41	81.01	83.44	83.30
北見モデル	VLINAX	t.c.25ms	83.21	80.86	84.72	79,85	82.36	82.20
北兇モナル	VLT(ref60)	t.c.10ms	86.51	84.58	87.49	83.25	85.69	85,51
	VLT(retau)	t.c.25ms	85.51	83.14	87.01	82.17	84.67	84,50
	VLmax	t.c.10ms	83.31	82.27	81.78	82.56	82.64	82.51
勝どきモデル	VLmax	t.c.25ms	81,42	80,72	80.12	79.55	80,20	80.40
	VLT(ref60)	t.c.10ms	85.35	84.74	84.05	84.74	84,75	84.73
		t.c.25ms	83.52	83.35	82.49	81.87	82.35	82.72
	VLmax	t.o.10ms	81.07	81.94	81.47	82.34	81.20	81.60
勝どき	VLmax	t.c.25ms	79.50	80.52	80.40	80.88	79.93	80.25
+αモデル	VLT(ref60)	t.c.10ms	83.28	84.19	83.58	84.60	83.38	83.81
	VL1(reidu)	t.c.25ms	81.77	82.96	82.69	83.16	82,21	82.56
	\/I	t.c.10ms	81.38	82.50	82.85	82.01	81.62	82.07
森林総研	₩ VLmax	t.c.25ms	79,08	81,41	81.31	79.88	79.87	80.31
+αモデル	\/\ T(=+60)	t.c.10ms	83.28	84.63	84.90	84.11	83.68	84.12
	I VI I (rethil)	t.c.25ms	81.15	83.69	83.43	82.09	82.07	82,49

表 3.10 に測定結果一覧を示す。

表 3.10 測定結果一覧

		オホーツク ウッドピア	北見モデル	勝どき フーダーズ スタジオ	勝どきモデル	勝どき +αモデル	森林総研1	森林総研2	森林総研 +αモデル
スパン(mm)		4550	5500	4600	5500	5500	4000	5500	5500
床CLT海(m	m)	210(7唐7ply)	210(5曆7ply)	210(7曆7ply)	210(5層7ply)	210(5層7ply)	150(5 M 5ply)	210(5層7ply)	210(5展7ply)
CLT材質(数	(乾密度(g/cm^3))	北海道産カラマツ (0.496)	スギ (0.38※)	九州産スギ (0.38※)	スギ (0.38※)	スギ (0.38※)	スギ (0.38※)	スギ (0.38※)	スギ (0.38※)
壁体厚さ(m	m)	150(CLT)	90(CLT) (床下側のみ)	150(CLT)	90(CLT) (床下側のみ)	90(CLT) (床下側のみ)	90(CLT)	90(CLT)	90(CLT) (床下側のみ)
壁-床の接信	\$	U字金物、L字金物	75×75×500 L字会物 853mmピッチ	床一下整 320mmビス版実打ち 300mmビッチ 上整一床 200mmビス解め打ち	床—下数 250mmビス版天打ち 300mmビッチ 上整一床 100mmビス斜め打ち 500mmビッチ	300mmビッチ 上駐—床	ş	?	床—下壁 140mmビス斜め打 ち 200mmビッチ
備考		実練床	試験体 上部整位置に 長手:1600kg 短手:1410kg 載荷	実排床	試験体 上部壁位置に 長事: 1000kg 短手: 900kg 截等	試験体 上部變位置に 長手:1890kg 短手:1410kg 載荷	試験体	試験体	試験体 上部壁位置に 長手:1600kg 短手:1410kg 載荷
100kgf静	的載荷	15	K点	KĀ	K点	KA	K点	K点	KĀ
中心点载荷	時変位(mm)	0.093	0.185	0.178	0.201	0.202	0.360	0.234	0.212
固有振動	数	1							
1次固有鉴	前数(Hz)	22,0	17.0	20.0	16.0	16.5	23.5	19.0	16.0
2次固有基理		25.5							
3次固有程		32.0	37.5		38.0	37.0			38.5
減衰定数	文(%)	15	K点		K点	K点			K点
床上0人		2.65	3.20		3,85	2.99			2.63
床上1人		4.14	4.11		4.75	5.21			5,42
末上2人		5.10	5.44		4.80	4.77			5.43
減衰時間			Кліі	KÁ	K点	KĀ	K点	K点	КÆ
	1/2減麦時間(s)	0.241	0.311	0.088	0,230	0.250	0.333	0,363	0.219
床上0人	1/4減衰時間(s)	0.496 0.765	0.639	0.148	0.460 0.737	0.530	0.516	0.647	0.430
	1/8減衰時間(s) 1/2減衰時間(s)	0.183	0.930	0,246 0,080	0.168	0.761	0.193	0.208	0,157
床上1人	1/4波表時間(s)	0.183	0.210	0.140	0.314	0.392	0.286	0,357	0.317
*****	1/8減衰時間(s)	0.572	0.611	0.211	0.465	0.545	0.385	0,514	0.456
	1/2減衰時間(s)	0.207	0.193	0.063	0.186	0.185	0.127	0.180	0,176
床上2人	1/4減衰時間(a)	0.338	0.337	0.114	0.342	0,345	0.196	0.249	0.305
	1/8減衰時間(s)	0,478	0.468	0.168	0,467	0.497	0.245	0.379	0.404
各種物理		1列参行							
	t.c.10ms	78,02	83.30		82.51	81,60	83,05	82.26	82,07
/Lmax	Łc.25ms	76,06	82.20		80.40	80.25			80,31
/LT(ref60)	t.c.10ms	79.62	85.51		84.73	83.81	83.20	84.00	84.12
/Literou)	t.o.25ms	77.80	84.50		82.72	82.56			82.49

| t.o.25ms 77.80 84,50 | ※気乾密度は「建築材料用教材」(日本建築学会から表もより引用

3.2.7 考察

北見モデルは、静的載荷時の荷重点下の変位が他のモデルよりも、わずかながら小さかった。北見モデルは他のモデルよりも減衰時間が長い傾向があり、他のモデルよりも振動を感じやすいものと思われる。森林総研 $+\alpha$ モデルは勝どき $+\alpha$ モデルよりも減衰時間が短く、床と壁の固定度の違いで減衰時間に差が生じる結果となった。

勝どきモデルと勝どき $+\alpha$ モデルとを比較すると、勝どき $+\alpha$ モデルの方が減衰時間が長く、床の上に載る壁の重量が減衰時間に影響しているものと推察された。

全モデルに対して言えることは、床上に人が乗ること、および乗る人数が増えることに よって減衰時間が短くなる傾向がみられたこと、減衰定数については床上に人が乗ると大 きくなるが、人数による明確な傾向はみられなかったことである。

3.3 シミュレーション解析

3.3.1 目的

本節では直交集成板CLTを床版に用いる場合における歩行振動性能を指標としたスパン表を作成することを目的として、有限要素法モデルの作成及び実験値との比較検証を行う。実験値との比較検証は、固有モード及び固有振動数の比較、100kgf 載加時の荷重一変形関係の比較を行い、実態に即した直交集成板CLTを用いた床版の解析モデルを設定する。更に歩行振動時の応答加速度の比較検証を行い、解析モデルの妥当性確認を行う。

また、解析パラメーターになりうる床版の端部固定度やスプライン接合の影響を検証した後、パラメトリックスタディを行い、床版の用途、区画の大きさ、直交集成板CLTの仕様及び官能評価等に応じたスパン表を作成する。

平成 27 年度は実験値との比較検証まで行い、次年度以降に床版の端部固定度やスプライン接合の解析モデル化やパラメトリックスタディを行う予定である。

3.3.2 解析概要

資料 p. 135

3.3.3 解析結果

固有モード、固有振動数及び 100kgf 載加時の荷重-変形関係:資料 p. 136~140 歩行振動時の応答加速度:資料 p. 141~155

スプライン接合、木材の密度及び CLT の剛性を規格値とした場合のパラメトリックスタディ:資料 p. 156

3.3.4 結果考察

解析結果から以下のような事項が確認できた。

- 1) 固有モード及び固有振動数は、1 次モード~3 次モードの範囲において概ね 10%以内の 誤差で実験値を再現することが可能であった。(ただし、入力データ中の剛性を実験 値、みかけのポアソン比は、実験値と解析値が合うように調整を実施した。)
- 2) 100kgf 載加時の荷重-変形関係は、8種類の載加全てにおいて実験値を再現することができた。
- 3) 歩行振動時の応答加速度の検証において、歩行振動の入力データ(加振者)が同じデータを入力することで、応答加速度及び1/3オクターブ分析結果より実験値を再現することができた。また、解析結果と歩行振動実験の各物理量を比較してみても概ね5%以内で納まっていることが確認できた。
- 4) パラメトリックスタディ結果において、いずれの CLT 床版でも、スプライン接合部有より無の方が、固有振動数がわずかに大きく、変形量がわずかに小さくなっていることが確認できた。いずれの CLT 床版でも、密度 0.496(カラマツ)より 0.4(スギ)の方が、固有振動数がわずかに大きくなっているが、変形量に差がないことが確認できた。 7層 7プライ実験値より、7層 7プライ規格値の方が、剛性が低いため、固有振動数

が小さく、変形量が大きくなっていることが確認できた。

5) パラメトリックスタディ結果における官能検査結果の比較より、スプライン接合部の有無,密度による差はわずかであった。7層7プライ実験値より、7層7プライ規格値の方が、剛性が低いため、VLTが大きく、1段階程度、評価が低くなっていることが確認できた。

3.3.5 今後の課題

- 1) 床版の端部固定度を変化させた場合の実験値と解析値の比較検証
- 2) スパン表を作成する際の入力データ(床版の剛性、みかけのポアソン比、減定数、端部固定度等)の値
- 3) 床版の材料、用途、仕様及び大きさをパラメーターとした歩行振動評価表(スパン表) の作成

3.4 今後の課題

本章ではCLT 床の歩行振動性状について実験的・解析的に検討を行ったが、最後のまとめとして、歩行振動に関する今後の課題を挙げる。

まず始めに、現在様々な CLT 床接合方法を採用した実物件が多数建設されていることから、引き続き床歩行振動データを収集し床接合部毎の振動特性を把握すると共に、最適な振動対策を講じるための基礎資料としてデータを蓄積していく必要がある。今年度の検討では、オホーツクウッドピアの接合方法をベースに、比較対照用として別物件(勝どきフーダーズスタジオ)の接合方法など 2,3 の接合方法について森林総合研究所の実大床試験体で再現実験を行ったが、端部接合方法や上載荷重の違いにより減衰時間に差が現れる結果が得られている。しかし、解析モデルに端部接合方法の影響を組みこむには検証例が少なすぎる事と、他の接合方法も実物件で採用されていることから、ある程度の仕様の違いについては実験的なデータを収集してその影響を考察する必要があるだろう。

また、歩行振動を軽減する端部接合方法や継手接合方法、最適スパンなどを検討し提案する必要もある。端部接合方法については振動性状と関係性がありそうな結果が得られたが、継手の接合方法については今のところ知見がない。面内せん断性能に対しては継手の仕様は重要な因子となり得るが、歩行振動についても同様に影響を及ぼす因子となり得るのか否かについては慎重に検討する必要がある。最適スパンについては、これらの影響を加味した上でパラメトリックスタディを行い、CLT 床の用途(建物の用途)や一区画の大きさ、CLT の樹種や層構成等に応じたスパン表を作成する必要がある。

以上大きく分けて2点について引き続き検討を続け、CLT 床がCLT 構造のみならず、集成材等建築物や枠組壁工法建築物でも容易に利用できるように技術的資料を提供していくことが重要である。

なお、現状では歩行振動の軽減対策など具体的な提案を行うほど知見が得られていないものの、一般論としては次のような対策が考えられる。まず、歩調の振動数と床の固有振動数が共振しないように、床の固有振動数を 10Hz 以上とすることが一般論としてあげられる。これについては、今年度検討を行った各種 CLT 床仕様でもクリアできている。一方で、減衰時間が長いという特徴が歩行振動の感覚評価にはマイナス要因となっており、気になり度が高い結果に結びついているとも考えられる。従って、歩行振動対策としては、まずは CLT 床の剛性を上げて歩調と共振しないようにしつつ、減衰時間が短くなるような対策を講じることが重要と考えられる。この減衰時間を短くする対策については、端部接合方法や継手接合方法の工夫により多少の効果はありそうだが、抜本的な対策にはならないだろう。あるいは、減衰装置的な要素を CLT 床の上あるいは下に取り付けて減衰を早めるなどの工夫も考えられるが、これも現時点では具体的な事例が見当たらない。歩行振動の軽減対策としては、今暫くデータ収集を続けながら、対策を検討するしか無さそうである。

以上、おもに部材の選定や接合部の仕様などハード面からの対策について検討してきた

が、歩行振動問題を未然に防ぐためには、部屋の配置や動線計画、さらには什器・備品の設置方法など、ソフト面からの対策も有効である。例えば、事務室など頻繁に歩行が行われる部屋と静寂を要する部屋を近接させないなど、加振源と受振体の距離をできるだけ多く取り距離減衰を稼ぐのは、振動環境に配慮した設計の基本である。間仕切り壁の設置なども、有効である。また、供用開始後の動線の位置、長さなども、歩行振動に影響する。大きな振動が発生しやすいスパン中央を避け、かつ何歩も連続して歩行できる長い動線を設けないなどの運用上の工夫も、効果が期待できる。なお、食器棚など微振動でがたつき音が発生する什器・備品を壁際に設置すると、床の変形にともなう微小な傾きによりがたつき音が発生し、体感では感じられないレベルの歩行振動でも、聴覚を介して振動を認知し、苦情につながる事例があることを、付け加える。

資料編

FEM解析概要

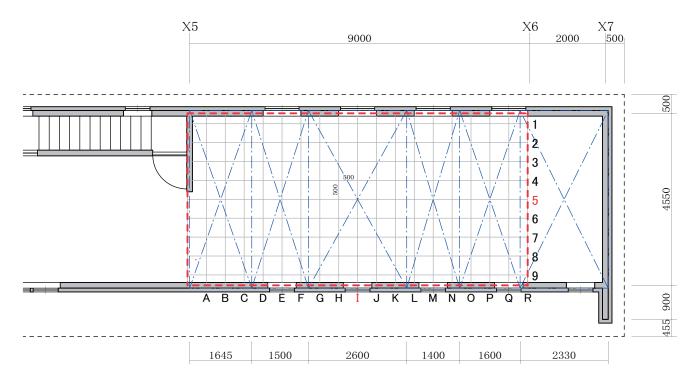


図-1 北見セミナーハウス2階平面図

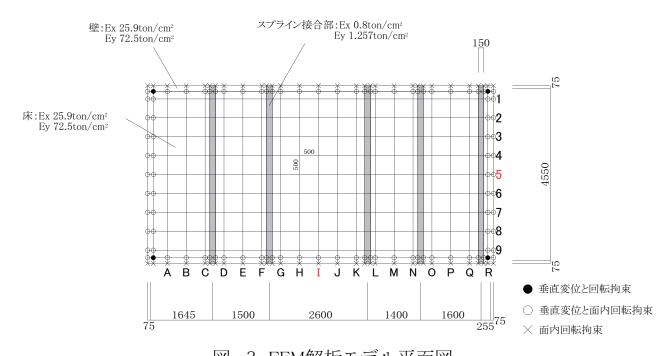
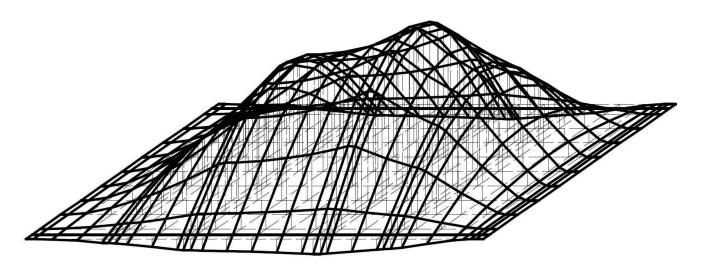


図-2 FEM解析モデル平面図


表-1 入力データ

	幅(mm)	厚さ(mm)	Ex(ton/cm ²)	Ey(ton/cm ²)	密度(ton/m³)	ポアソン比ν
壁	150	210	25.9	72.5	0.496	0.2
床	_	210	25.9	72.5	0.496	0.2
スプライン接合部	150	210	$34.3 \times (2/7)^3 = 0.8$	$53.9 \times (2/7)^3 = 1.257$	0.496	0.4

[※]スプライン接合部のExは、24mm厚構造用合板の繊維方向の基準曲げヤング係数を、断面二次モーメントに応じて補正した値。 Eyは、24mm厚構造用合板の繊維方向の直交方向の基準曲げヤング係数を、断面二次モーメントに応じて補正した値。

FEM解析結果

1次固有モード図(19.775Hz)

3次固有モード図(33.226Hz)

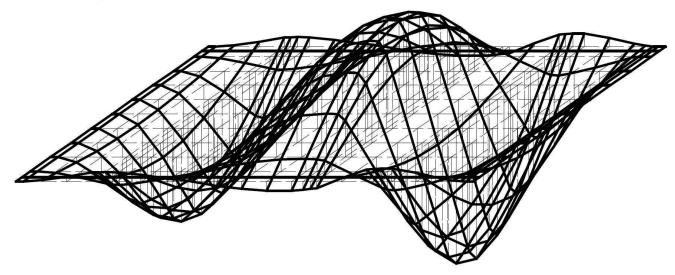


図-3 固有振動数と固有モード図

表-2 100kgf静的載荷解析結果

			12 4		0-144	A 1741.47	丹牛少1 亦	1/14		
	列	I	J	K		М	N	0	Р	Q
行	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500	0.032532625								
3	1000	0.064804572								
4	500	0.079812954								
5		0.092489734	0.077052129	0.063869885	0.037699742	0.022860760	0.010197647	0.003516188	0.003356437	0.000697841
解析結果		I	J	K	1	M	N	0.000010100	P	O.
	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2			300	1000	1300	2000	2300	3000	3300	4000
		0.035522900								
3	1000	0.058004900								
4		0.076110800	0.070070000	0.004507000	0.050004400	0.000000100	0.010400000	0.000044000	0.00500000	0.001000170
5	0	0.083899000	0.076373300	0.064567200	0.050204100	0.032836400	0.018438600	0.009944220	0.005380930	0.001862470
J5										
実測値		I	J	K	L	M	N	0	P	Q
	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500		0.049783842							
3	1000		0.067966951							
4			0.091302906				Ì			
5		0.078955367	0.099804664	0.090404130	0.063225254	0.038586732	0.021970348	0.012337683	0.005589273	0.002635076
		0.076933307	0.099604004	0.090404130	0.003223234	0.036360732	0.021970346	0.012337003	0.0000009273	0.002033070
解析結果		1	J	1000	T 1500	IVI	0500	0000	0500	4000
行	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500		0.038454600							
3	1000		0.062713400							
4	500		0.082034200							
5	0	0.076373300	0.090169400	0.090478100	0.077277700	0.051629600	0.030236300	0.016921200	0.009287820	0.003185470
K5										
実測値		ī	J	K	1	М	N	0	P	Q
	95 密件 (0	500	1000	1500		2500		3500	_
	距離(mm)	U	500	1000	1500	2000	2500	3000	3500	4000
2				0.046710794		-	1		-	
3				0.088200080		ļ	ļ		ļ	
4	500			0.102999905						
5		0.066596173	0.091100850	0.119202032	0.087557605	0.056519715	0.025983663	0.011275662	0.010812798	0.002832499
解析結果		I	J	K	L	M	N	0	P	Q
	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500			0.050355200			1		1	
2	1000			0.082430500		1	†		1	
3				0.107134000		 	 		 	
4		0.004507000	0.000470400		0.110400000	0.07504000	0.045001105	0.000001700	0.014040705	0.005000.105
5	0	0.064567200	0.090478100	0.117055000	0.112490000	0.075918300	0.045804100	0.026684700	0.014618700	0.005083420
L5										
実測値		I	J	K	L	М	N	0	P	Q
	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500	J	000	1000	0.051072005	2000	2000	0000	0000	1000
2					0.089174469					
3	1000									
4					0.122706519					
5		0.043166479	0.064200452	0.086991232	0.125213096	0.084353904	0.050563139	0.026353904	0.020695552	0.007804989
解析結果		I	J	K	L	M	N	0	P	Q
行	距離(mm)	0	500	1000	1500	2000	2500	3000	3500	4000
2	1500	_			0.053954700					
	1000				0.088861500					
2										
3										
4	500				0.115976000					
4 5	500	0.050204100	0.077277700	0.112490000	0.117976000	0.095403600	0.066633200	0.043045800	0.024202700	0.008477580
4 5 M5	500	0.050204100	0.077277700	0.112490000		0.095403600	0.066633200	0.043045800	0.024202700	0.008477580
4 5 M5 実測値	500	I	J	К	0.127227000 L	0.095403600 M	N	0	Р	0.008477580 Q
4 5 M5 実測値	500	0.050204100 I	J 500	0.112490000 K 1000		0.095403600 M 2000	0.066633200 N 2500		0.024202700 P 3500	
4 5 M5 実測値	500 0 距離(mm)	I	J	К	0.127227000 L	M 2000	N	0	Р	Q
4 5 M5 実測値 2	500 0 距離(mm) 1500	I	J	К	0.127227000 L	M 2000 0.039522893	N	0	Р	Q
4 5 M5 実測値 2 3	500 0 距離(mm) 1500 1000	I	J	К	0.127227000 L	M 2000 0.039522893 0.067987464	N	0	Р	Q
4 5 M5 実測値 2 3 4	500 0 距離(mm) 1500 1000 500	I 0	J 500	K 1000	0.127227000 L 1500	M 2000 0.039522893 0.067987464 0.085805030	N 2500	O 3000	P 3500	Q 4000
4 5 M5 実測値 2 3 4 5	距離(mm) 1500 1000 500	I	J	К	0.127227000 L	M 2000 0.039522893 0.067987464	N	0	Р	Q
4 5	距離(mm) 1500 1000 1000 500 列	0.030333462	J 500 0.032554137	K 1000 0.053553046	0.127227000 L 1500 0.080071344	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M	N 2500 0.083101572	O 3000 0.053791015	9 3500 0.033221796	Q 4000 0.014298660 Q
4 5 M5 実測値 2 3 4 5 解析結果	距離(mm) 1500 0 0 0 1500 500 0 列 距離(mm)	I 0	J 500	K 1000	0.127227000 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000	N 2500	O 3000	P 3500	Q 4000
4 5 M5 実測値 2 3 3 4 5 解析結果 行	距離(mm) 1500 0 0 1500 1000 500 0 列 距離(mm)	0.030333462	J 500 0.032554137	K 1000 0.053553046	0.127227000 L 1500 0.080071344	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700	N 2500 0.083101572	O 3000 0.053791015	9 3500 0.033221796	Q 4000 0.014298660 Q
## 5 M5	<u>距離(mm)</u> 1500 1000 500 0 列 距離(mm) 1500	0.030333462	J 500 0.032554137	K 1000 0.053553046	0.127227000 L 1500 0.080071344	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000	N 2500 0.083101572	O 3000 0.053791015	9 3500 0.033221796	Q 4000 0.014298660 Q
4 5 M5 実測値 2 3 4 5 解析結果 行 2 3 4 5	<u>距離(mm)</u> 1500 1000 500 0 列 距離(mm) 1500 1000	0.030333462 I	J 500 0.032554137 J 500	0.053553046 K	0.127227000 L 1500 0.080071344 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000	0.083101572 N	O 3000 0.053791015 O 3000	P 3500 0.033221796 P 3500	Q 4000 0.014298660 Q 4000
4 5 M5 実測値 2 3 4 5 解析結果 行 2	<u>距離(mm)</u> 1500 1000 500 0 列 距離(mm) 1500 1000	0.030333462 I	J 500 0.032554137	0.053553046 K	0.127227000 L 1500 0.080071344 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000	N 2500 0.083101572	O 3000 0.053791015 O 3000	P 3500 0.033221796 P 3500	Q 4000 0.014298660 Q 4000
4 5 M5 実測値 2 3 4 5 解析結果 行 2 3 4 5	<u>距離(mm)</u> 1500 1000 500 0 列 距離(mm) 1500 1000	0.030333462 I	J 500 0.032554137 J 500	0.053553046 K	0.127227000 L 1500 0.080071344 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000	0.083101572 N	O 3000 0.053791015 O 3000 0.069275100	P 3500 0.033221796 P 3500	Q 4000 0.014298660 Q 4000
4 5 M5 実測値 2 3 4 5 M5 F T T T T T T T T T	<u>野離(mm)</u> 1500 1000 1000 5000 列 <u>距離(mm)</u> 1500 1000 500	0.030333462 0.030333462 0.032836400	J 500 0.032554137 J 500 0.051629600	0.053553046 K 1000 0.075918300	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.0990567000 0.099422200	0.083101572 N	0 3000 0.053791015 0 3000 0.069275100	9 3500 0.033221796 P 3500 0.039494800	Q 4000 0.014298660 Q 4000 0.014017600
4 5 M5 実測値 2 3 4 5 M5 F T T T T T T T T T	<u>距離(mm)</u> 1500 1000 500 0 列 距離(mm) 1500 1000	0.030333462 I	J 500 0.032554137 J 500	0.053553046 K	0.127227000 L 1500 0.080071344 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000	0.083101572 N	O 3000 0.053791015 O 3000 0.069275100	P 3500 0.033221796 P 3500	Q 4000 0.014298660 Q 4000 0.014017600
4 5 M5 実測値 2 3 4 5 M5 F T T T T T T T T T	<u>野離(mm)</u> 1500 1000 1000 5000 列 <u>距離(mm)</u> 1500 1000 500	0.030333462 0.030333462 0.032836400	J 500 0.032554137 J 500 0.051629600	0.053553046 K 1000 0.075918300	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.0990567000 0.099422200	N 2500 0.083101572 N 2500 0.092733400 N	0 3000 0.053791015 0 3000 0.069275100	9 3500 0.033221796 P 3500 0.039494800	Q 4000 0.014298660 Q 4000 0.014017600
4 5 M5 実測値 2 3 4 5 解析結果 行 2 3 3 4 5 N5 実別値	<u>500</u> 0 <u>0</u> <u>2</u> <u>2</u> <u>2</u> <u>3</u> <u>3</u> <u>3</u> <u>5</u> <u>9</u> <u>9</u> <u>9</u> <u>9</u> <u>1000</u> <u>500</u> 1000 500 1000 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 0.030333462 0.032836400	J 500 0.032554137 J 500 0.051629600	0.053553046 K 1000 0.075918300	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.0990567000 0.099422200	0.083101572 N 2500 	0 3000 0.053791015 0 3000 0.069275100	9 3500 0.033221796 P 3500 0.039494800	Q 4000 0.014298660 Q 4000 0.014017600
4 5 M/5 実測値 2 3 4 4 5 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M/5 M	野離(mm) 1500 0 0 1500 500 0 列 距離(mm) 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 0.030333462 0.032836400	J 500 0.032554137 J 500 0.051629600	0.053553046 K 1000 0.075918300	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.0990567000 0.099422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364	O 3000 0.053791015 O 3000 0.069275100 O	9 3500 0.033221796 P 3500 0.039494800	Q 4000 0.014298660 Q 4000 0.014017600
## A	<u>距離(mm)</u> 1500 1000 500 0 列 <u>距離(mm)</u> 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 I 0 0.032836400	J 500 0.032554137 J 500 0.051629600 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000 0.099422200 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809901	O 3000 0.053791015 O 3000 0.069275100 O 3000	9 3500 0.033221796 P 3500 0.039494800 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000
4 5 M5 実測値 3 4 5 M 5 M 5 M 5 M 5 M 5 M 5 M 5 M 4 5 M 5 M	<u>野離(mm)</u> 1500 1000 500 0 <u>列</u> <u>野間(mm)</u> 1500 500 0 <u>距離(mm)</u> 1500 1000 500 0	0.030333462 0.030333462 0.032836400	J 500 0.032554137 J 500 0.051629600	0.053553046 K 1000 0.075918300	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.0990567000 0.099422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364	O 3000 0.053791015 O 3000 0.069275100 O	9 3500 0.033221796 P 3500 0.039494800	Q 4000 0.014298660 Q 4000 0.014017600
4 5 M5 実測値 2 3 4 4 5 5 M5 実測値 2 3 4 4 5 N5 実測値 2 3 4 4 5 M5 M	距離(mm) 1500 500 0 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.030333462 0.030333462 0.032836400 0.032836400 0.013721911	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.009422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q
### A	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 I 0 0.032836400	J 500 0.032554137 J 500 0.051629600 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.099422200 M 2000 0.099422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079	9 3500 0.033221796 P 3500 0.039494800 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387
4 5 M5 実測値 3 4 5 M 5 M 5 M 5 M 5 M 5 M 5 M 5 M 5 M 5	<u>野離(mm)</u> 1500 1000 500 0 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 <u>距離(mm)</u> 1500 0 <u>列</u> <u>距離(mm)</u> 1500	0.030333462 0.030333462 0.032836400 0.032836400 0.013721911	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.009422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q
4 5 M5 実測値 3 4 5 解析結果 行 2 3 4 4 5 5 N5 実測値	野離(mm) 1500 1000 500 0 列 距離(mm) 1500 1000 500 0 9 距離(mm) 1500 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.030333462 0.030333462 0.032836400 0.032836400 0.013721911	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.009422200	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.12478050 N 2500 0.051214800 0.084446700	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q
## A	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 <u>更離(mm)</u> 1500 1500 0 <u>更離(mm)</u> 1500 1500 0 0	0.030333462 1 0 0.032836400 I 0 0.013721911 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000 0.099422200 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000
## A 5 M5 E 3 A 4 A 5 A 4	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 <u>更離(mm)</u> 1500 1500 0 <u>更離(mm)</u> 1500 1500 0 0	0.030333462 1 0 0.032836400 I 0 0.013721911 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000 0.099422200 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.12478050 N 2500 0.051214800 0.084446700	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000
## A	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 <u>更離(mm)</u> 1500 1500 0 <u>更離(mm)</u> 1500 1500 0 0	0.030333462 1 0 0.032836400 I 0 0.013721911 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000 0.099422200 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000
4 5 M5 実測値 3 4 5 解析結果 行 2 3 4 5 N5 実測値 7 2 3 4 5 5 M4 5 5 N5 実別値 2 3 4 4 5 5 N5 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 0 <u>更離(mm)</u> 1500 1500 0 <u>更離(mm)</u> 1500 1500 0 0	0.030333462 1 0 0.032836400 I 0 0.013721911 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.069365000 0.090567000 0.099422200 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000
## A 5 M5 E 3 A 4 A 5 A 4	<u>距離(mm)</u> 1500 1000 500 <u>列</u> <u>距離(mm)</u> 1500 1000 500 1000 500 0 <u>り</u> 1500 1000 500 0 <u>り</u> <u>1500</u> 1500 1500 0 <u>り</u> <u>1500</u> 1500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 1 0 0.032836400 I 0 0.013721911 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214890 0.084446700 0.018446700 0.11571000 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q
## A		0.030333462 0.030333462 1 0 0.032836400 I 0.013721911 0 0.018438600	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L	M 2000 0.039522893 0.067987464 0.085895030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400
4 5 M5 実測値 3 4 5 M折結果 行 2 3 4 5 N5 実測値 2 3 3 4 5 6 6 7 7 7 7 2 3 3 4 4 5 5 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	野離(mm) 1500 0 列 距離(mm) 1500 1000 500 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 0.030333462 1 0 0.032836400 I 0.013721911 0 0.018438600	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214890 0.084446700 0.018446700 0.11571000 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 O.101008000 O 3000 0.056536173	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q
## A	<u>距離(mm)</u> 1500 1000 500 0 回離(mm) 1500 1000 500 0 回離(mm) 1500 1000 500 0 回離(mm) 1500 1500 1500 1500 1500 1500 1500 150	0.030333462 0.030333462 1 0 0.032836400 I 0.013721911 0 0.018438600	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 0.084406725 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214890 0.084446700 0.018446700 0.11571000 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 O 3000 O 0.056536173 O 0.078857376	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q
## A		0.030333462 0.030333462 0.032836400 0.013721911 0.018438600 I	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099365000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.084446700 0.110545000 0.110545000 0.121571000 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 O.056536173 0.078857376 0.101715201	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000
## A	<u>距離(mm)</u> 1500 <u>の</u> 9 <u>距離(mm)</u> 1500 <u>500</u> 0 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 0 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 1500 <u>9</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> (mm) 1500 <u>1000</u> 500 <u>9</u> <u>8</u> <u>8</u> <u>8</u> (mm) 1500 <u>1000</u> 500 <u>1000</u> 500	0.030333462 0.030333462 1 0 0.032836400 I 0.013721911 0 0.018438600	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.0992733400 M 2000 0.0992733400	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.1019994565	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816
M5 実測値 2 3 4 5 1 1 1 1 1 1 1 1 1	<u>距離(mm)</u> 1500 1000 500 0 回離(mm) 1500 1000 500 0 回離(mm) 1500 1000 500 0 回距離(mm) 1500 1500 1500 1500 0 0 0 0 0 0 0 0 0 0	0.030333462 I 0 0.032836400 I 0 0.013721911 I 0 0.018438600 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086446700 0.121571000 N 2500 0.086862893 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 O.101008000 O 3000 O.056536173 O.078857376 O.101715201 O.109994565 O 1.019994565	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q
M5 実測値 2 3 4 5 1 1 1 1 1 1 1 1 1	<u>距離(mm)</u> 1500 <u>の</u> 9 <u>距離(mm)</u> 1500 <u>500</u> 0 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 0 <u>9</u> <u>多の</u> 1500 <u>1000</u> 500 <u>9</u> <u>多の</u> 1500 <u>9</u> <u>8</u> <u>8</u> <u>8</u> <u>8</u> (mm) 1500 <u>1000</u> 500 <u>9</u> <u>8</u> <u>8</u> <u>8</u> (mm) 1500 <u>1000</u> 500 <u>1000</u> 500	0.030333462 0.030333462 0.032836400 0.013721911 0.018438600 I	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.0992733400 M 2000 0.0992733400	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.1019994565	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816
M5 実測値 2 3 4 5 1 1 1 1 1 1 1 1 1	<u>距離(mm)</u> 1500 1000 500 0 回離(mm) 1500 1000 500 0 回離(mm) 1500 1000 500 0 回距離(mm) 1500 1500 1500 1500 0 0 0 0 0 0 0 0 0 0	0.030333462 I 0 0.032836400 I 0 0.013721911 I 0 0.018438600 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086446700 0.121571000 N 2500 0.086862893 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 0.056536173 0.078857376 0.101715201 0.109994565 O 3000 0.041170500 O 0.041170500	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q
### A	<u>距離(mm)</u> 1500 <u>の</u> 9 <u>距離(mm)</u> 1500 <u>500</u> 0 <u>9</u> <u>500</u> 1000 500 0 <u>500</u> 0	0.030333462 I 0 0.032836400 I 0 0.013721911 I 0 0.018438600 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086446700 0.121571000 N 2500 0.086862893 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 0.056536173 0.078857376 0.101715201 0.109994565 O 3000 0.041170500 O 0.041170500	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q
## A	<u>距離(mm)</u> 1500 1000 500 0 0 0 0 0 0 0 0 0 0 0 0 0	0.030333462 I 0 0.032836400 I 0 0.013721911 I 0 0.018438600 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086446700 0.121571000 N 2500 0.086862893 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.10994565 O 3000 0.041170500 0.041170500 0.067768200	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q
### A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K 1000 0.045804100 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0121571000 N 2500 0.0086662893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.056536173 0.078857376 O 101715201 0.109994565 O 3000 0.041170500 0.0417768200 0.089053100	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 4000
### A		0.030333462 I 0 0.032836400 I 0 0.013721911 I 0 0.018438600 I 0 0.004116597 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.099422200 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086446700 0.121571000 N 2500 0.086862893 N	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.10994565 O 3000 0.041170500 0.041170500 0.067768200	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q
## A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K 1000 0.045804100 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L	M 2000 0.039522893 0.06798746 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099367000 0.099422200 M 2000 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000 0.092733400	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.121571000 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.109994565 O 3000 0.041170500 0.041170500 0.067768200 0.089053100 0.097921900	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500
M5 実測値 A M5 M5 M5 M5 M5 M5 M5		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 0.007327728 K 1000 0.007327728 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.110545000 N 2500 0.086862893 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.056536173 0.078857376 O 101715201 0.109994565 O 3000 0.041770500 0.0497768200 0.089053100 0.089053100 0.097921900 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.022373500 Q
M5 実測値 A M5 M5 M5 M5 M5 M5 M5		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 0.045804100 K 1000 0.045804100 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L	M 2000 0.039522893 0.06798746 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099367000 0.099422200 M 2000 M 2000 0.084406725 M 2000 M 2000 0.092733400 M 2000 0.092733400	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.121571000 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 0.101715201 0.109994565 O 3000 0.041170500 0.041170500 0.067768200 0.089053100 0.097921900	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500
M5 実測値 A M5 M5 M5 M5 M5 M5 M5		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 0.007327728 K 1000 0.007327728 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.110545000 N 2500 0.086862893 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.056536173 0.078857376 O 101715201 0.109994565 O 3000 0.041770500 0.0497768200 0.089053100 0.089053100 0.097921900 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.022373500 Q
## A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 0.007327728 K 1000 0.007327728 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.110545000 N 2500 0.086862893 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.056536173 0.078857376 O 101715201 0.109994565 O 3000 0.041770500 0.0497768200 0.089053100 0.089053100 0.097921900 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.022373500 Q
### A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 0.007327728 K 1000 0.007327728 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.0110545000 0.110545000 0.110545000 N 2500 0.086862893 N 2500 0.086862893 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.056536173 0.078857376 O 101715201 0.109994565 O 3000 0.041770500 0.0497768200 0.089053100 0.089053100 0.097921900 O	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500 Q
### A		0.030333462 0.032936400 0.032936400 0.013721911 0.018438600 I 0.004116597 I 0.009944220 I	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099567000 0.099567000 0.09957000 0.099573400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.04951532 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 0.056536173 0.078857376 0.101715201 0.109994565 O 0.067768200 0.067768200 0.089053100 0.089053100 O.097921900 O 3000 O.097921900 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394 0.057621529	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500 Q 4000
## S		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 0.007327728 K 1000 0.007327728 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.09967000 0.099422200 M 2000 M 2000 0.084406725 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.121571000 N 2500 0.084446700 0.110545000 0.121571000 N 2500 N 2500 N 2500 N 2500 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.076857376 0.101715201 0.109994565 O 3000 0.041170500 0.041170500 0.041770500 0.097921900 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500 Q 4000 0.022373500 Q 4000
M5 実測値 2 3 4 5 M5 F M5 M5 M5 M5 M5		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220 0.0099575166	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 0.007327728 K 1000 K 1000 0.009208571 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L 1500 0.017427648 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.089367000 0.09942200 M 2000 0.090567000 0.09942200 M 2000 0.089367000 0.09942200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000 0.051238797 M 2000 0.051238797 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 O 3000 0.041170500 0.067768200 0.089053100 0.089053100 0.097921900 O 3000 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394 0.057621529 0.075462680 P 0.75462680	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.026584816 Q 4000 0.022373500 Q 4000 0.046926410 Q
## A		0.030333462 0.032936400 0.032936400 0.013721911 0.018438600 I 0.004116597 I 0.009944220 I	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 K 1000	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.09967000 0.099422200 M 2000 M 2000 0.084406725 M 2000 0.092733400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.121571000 N 2500 0.084446700 0.110545000 0.121571000 N 2500 N 2500 N 2500 N 2500 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.076857376 0.101715201 0.109994565 O 3000 0.041170500 0.041170500 0.041770500 0.097921900 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.04201839 0.057621529 0.075462680 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.036584816 Q 4000 0.022373500 Q 4000 0.022373500 Q 4000
## 15		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220 0.0099575166	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 0.007327728 K 1000 K 1000 0.009208571 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L 1500 0.017427648 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.089367000 0.09942200 M 2000 0.090567000 0.09942200 M 2000 0.089367000 0.09942200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000 0.051238797 M 2000 0.051238797 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 O 3000 0.041170500 0.067768200 0.089053100 0.089053100 0.097921900 O 3000 O 3000	P 3500 0.033221796 P 3500 0.033494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394 0.057621529 0.07546280 P 3500 0.07546280 P 3500 0.018076000	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.026584816 Q 4000 0.022373500 Q 4000 0.046926410 Q
## A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220 0.0099575166	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 0.007327728 K 1000 K 1000 0.009208571 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L 1500 0.017427648 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.089367000 0.09942200 M 2000 0.090567000 0.09942200 M 2000 0.089367000 0.09942200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000 0.051238797 M 2000 0.051238797 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 O 3000 0.041170500 0.067768200 0.089053100 0.089053100 0.097921900 O 3000 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.04201839 0.057621529 0.075462680 P 3500	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.026584816 Q 4000 0.022373500 Q 4000 0.046926410 Q
## A		0.030333462 0.030333462 0.032836400 0.032836400 0.013721911 0.018438600 0.018438600 0.004116597 0.009944220 0.0099575166	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 0.007327728 K 1000 K 1000 0.009208571 K	0.127227000 L 1500 0.080071344 L 1500 0.095403600 L 1500 0.049824895 L 1500 0.066633200 L 1500 0.020895191 L 1500 0.043045800 L 1500 0.017427648 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099657000 0.099422200 M 2000 0.089367000 0.09942200 M 2000 0.090567000 0.09942200 M 2000 0.089367000 0.09942200 M 2000 0.084406725 M 2000 0.092733400 M 2000 0.092733400 M 2000 0.051238797 M 2000 0.051238797 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.049513521 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500 N 2500	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 O 3000 0.041170500 0.067768200 0.089053100 0.089053100 0.097921900 O 3000 O 3000	P 3500 0.033221796 P 3500 0.039494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394 0.057621529 0.057621529 0.018076000 0.030479400	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.022373500 Q 4000 0.022373500 Q 4000 0.046926410 Q 0
## 15		0.030333462 0.032936400 I 0.032936400 I 0.013721911 I 0 0.018438600 I 0.004116597 I 0 0.009944220 I 0 0.007575166 I 0	J 500 0.032554137 J 500 0.051629600 J 500 0.018622618 J 500 0.030236300 J 500 0.004550476 J 500 0.016921200 J 500	K 1000 0.053553046 K 1000 0.075918300 K 1000 0.026792621 K 1000 K 1000 0.045804100 K 1000 K 1000 K 1000 K 1000 0.007327728 K 1000 K 1000 0.009208571 K	0.127227000 L	M 2000 0.039522893 0.067987464 0.085805030 0.093925439 M 2000 0.042630700 0.099367000 0.099567000 0.09957000 0.099573400 M 2000	N 2500 0.083101572 N 2500 0.092733400 N 2500 0.04951532 0.091972364 0.109809801 0.124878050 N 2500 0.051214800 0.110545000 0.121571000 N 2500 0.086862893 N 2500 0.101008000 N 2500 0.101008000	O 3000 0.053791015 O 3000 0.069275100 O 3000 0.093030079 O 3000 0.101008000 O 3000 0.056536173 0.078857376 O 3000 0.041170500 0.067768200 0.089053100 0.089053100 0.097921900 O 3000 O 3000	P 3500 0.033221796 P 3500 0.033494800 P 3500 0.051534133 P 3500 0.057678500 P 3500 0.072512686 P 3500 0.060561900 P 3500 0.026284838 0.042018394 0.057621529 0.07546280 P 3500 0.07546280 P 3500 0.018076000	Q 4000 0.014298660 Q 4000 0.014017600 Q 4000 0.023927387 Q 4000 0.020576400 Q 4000 0.022373500 Q 4000 0.022373500 Q 4000 0.046926410 Q 0

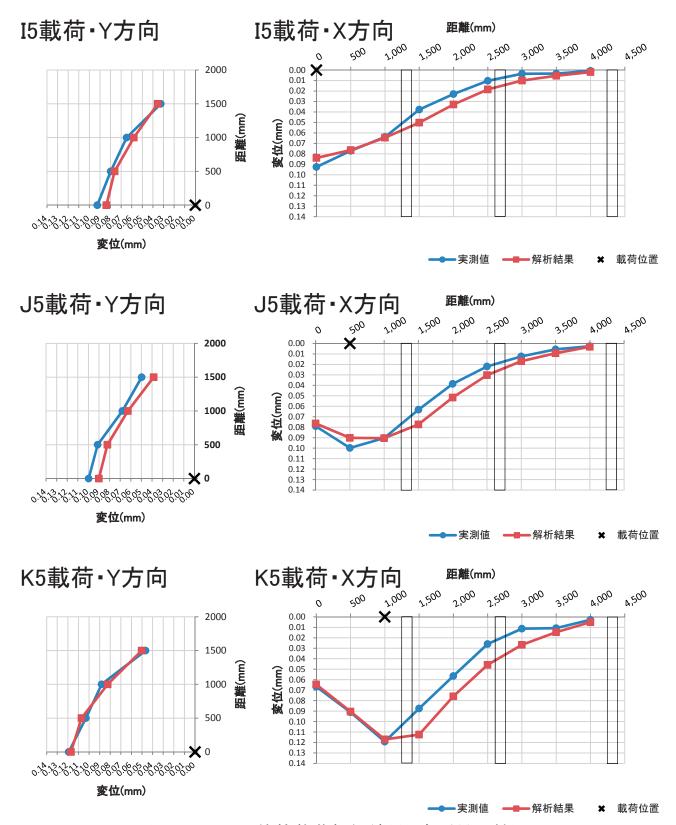


図-4 100kgf静的載荷解析結果 変形量比較図1

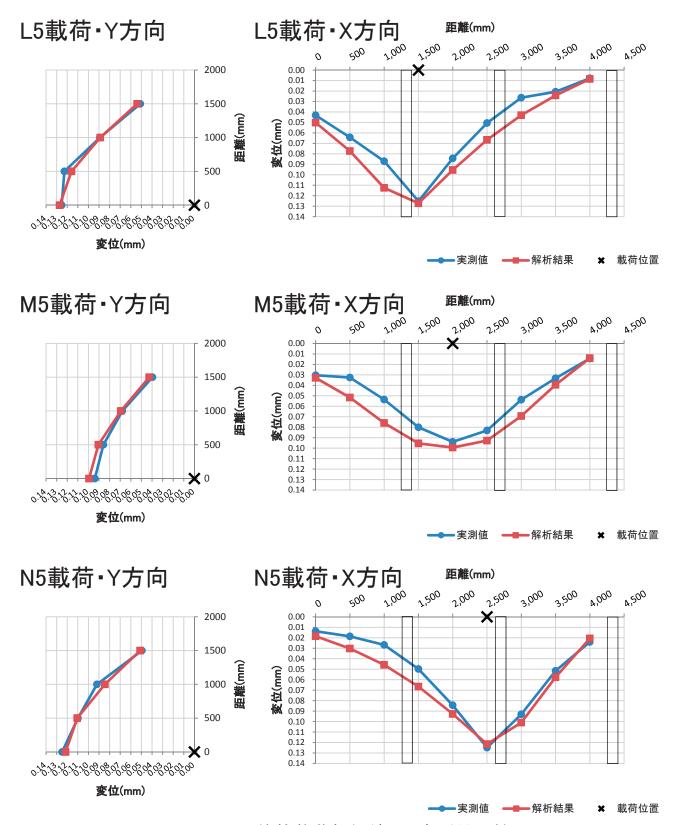
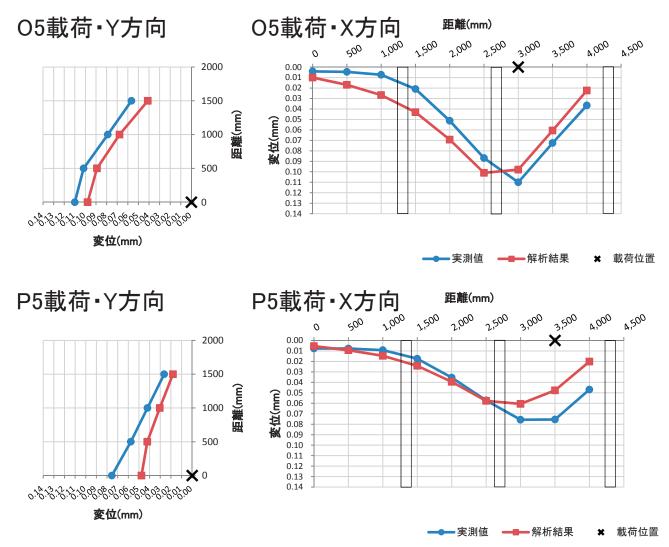
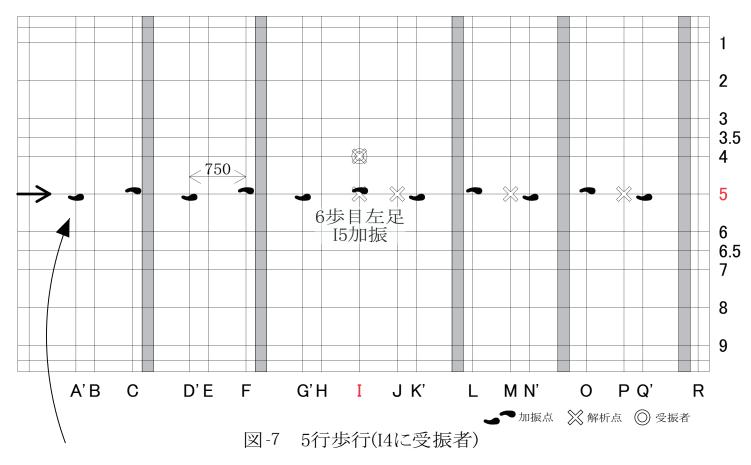
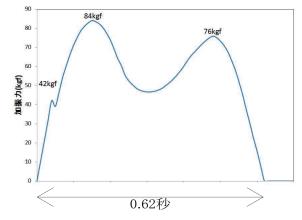


図-5 100kgf静的載荷解析結果 変形量比較図2




図-6 100kgf静的載荷解析結果 変形量比較図3

固有振動数比較


表-3 固有振動数比較

	1次	2次	3次
実測値(Hz)	22.000	25.500	32.000
解析結果(Hz)	19.775	23.588	33.226
誤差(%)	-10.114	-7.498	3.831

歩行振動の入力

1歩分の歩行波(HokouHの場合)

現場測定時の条件

- ・歩行者の体重約70kgf
- ·歩調2Hz
- ・履物くつ下
- ・5行を右方向へ11歩で歩行
- •6歩目(左足)でI5に加振
- ·I4に受振者(約83kgf)
- •15, I4, J5, M5, P5に加速度計を設置

加振力の設定

- ・1歩目に1歩分の歩行波(上図)の加振力を入力
- ・0.5秒後に2歩目に1歩分の歩行波の加振力を入力
- ・同様に0.5秒間隔(2Hz)で11歩目まで入力
- ・床の減衰定数は、床上に2人いる場合のハンマー加振の結果から求めた5.10%とした
- •I5,I4,J5,M5,P5の応答変位、応答速度、応答加速度を求めた

I列歩行、M列歩行、P列歩行についても同様に、歩行振動を入力した(次頁図参照)

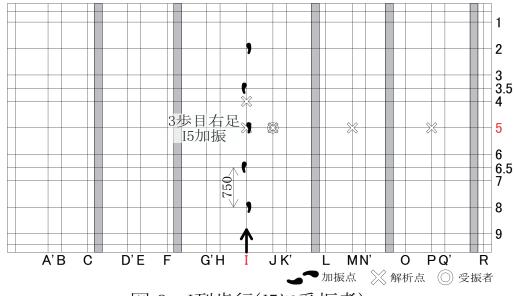


図-8 I列歩行(J5に受振者)

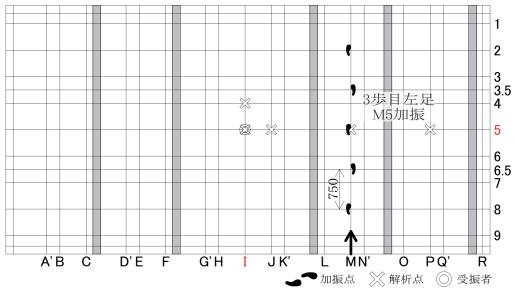


図-9 M列歩行(I5に受振者)

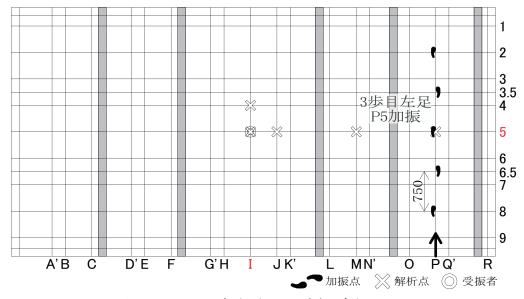
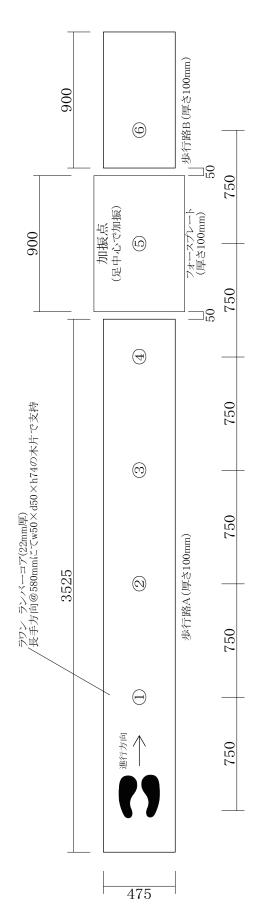
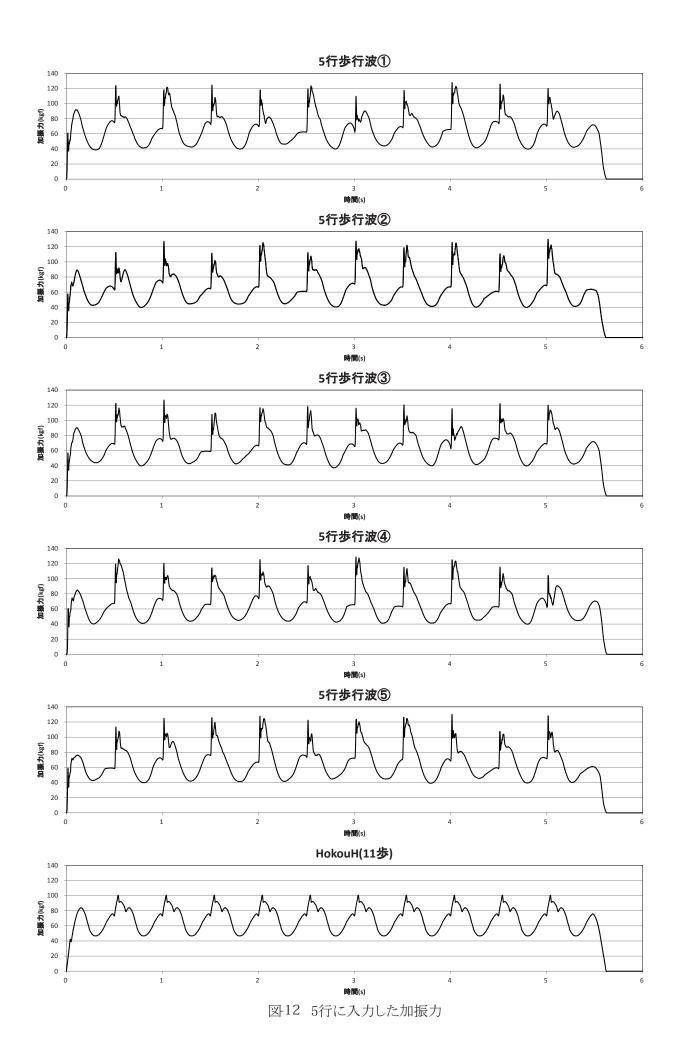
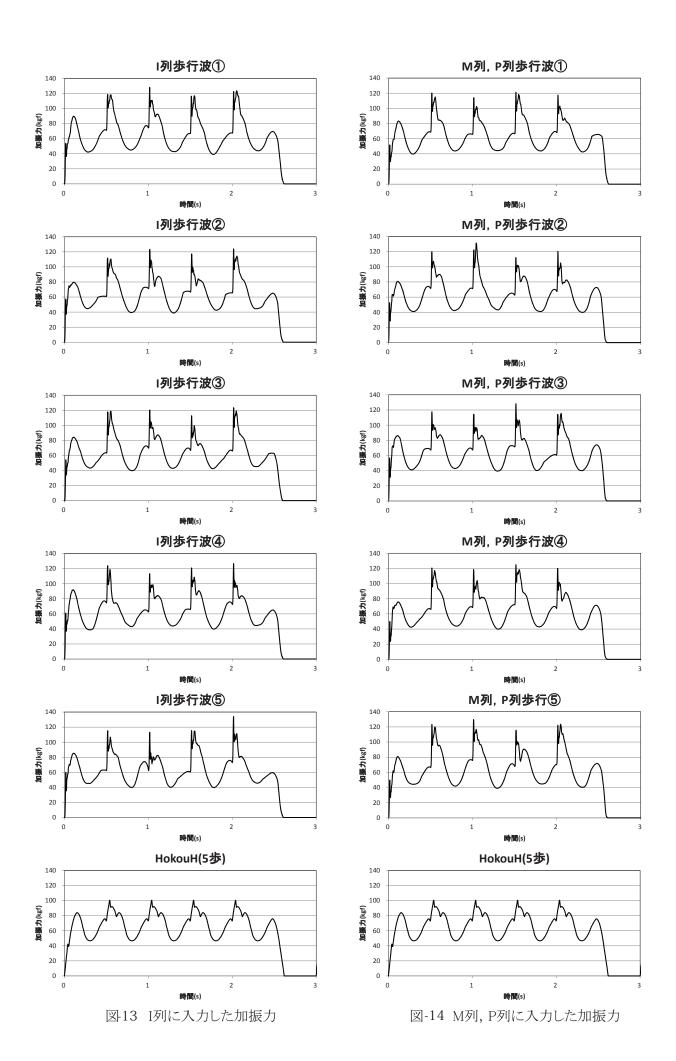


図-10 P列歩行(I5に受振者)

歩行加振力の測定概要




図-11 歩行加振力の測定方法


加振点に右足5歩目で加振したときの加振力加振点に左足5歩目で加振したときの加振力 1, 加板点に右足5歩目で加板したどぎのJ II, 加振点に左足5歩目で加振したときのJ 測定条件 歩行者:成人男性1人(23歳、体重70kg) 履物:くっ下 歩調:2Hz(メトロノーム使用) 測定手順

i)図のように歩行路を設置する。 ii)歩行者が実際に歩いて、1歩目から6歩目までの着地位置、加振点に印をつける。 (歩幅は750mmとしてあるが、当日の調子によって自然に加振できるよう調節するため。

右足から歩き始め、加振点に右足で加振し、加振力を記録する。 これを25回行う。 関定項目IIの測定を行う。

左足がら歩き始め、加振点に左足で加振し、加振力を記録する。 これを25回行う。 <u>(</u>

歩行加振力1/3オクターブ分析結果

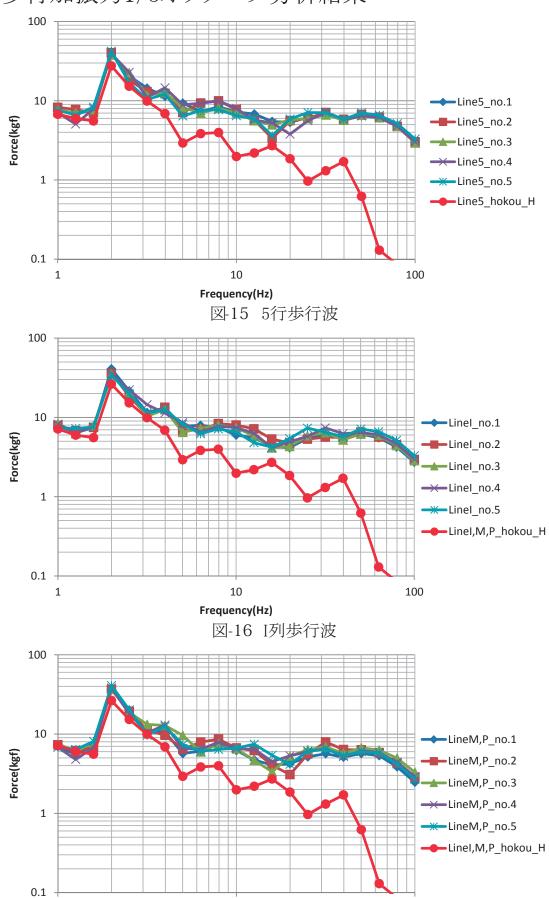
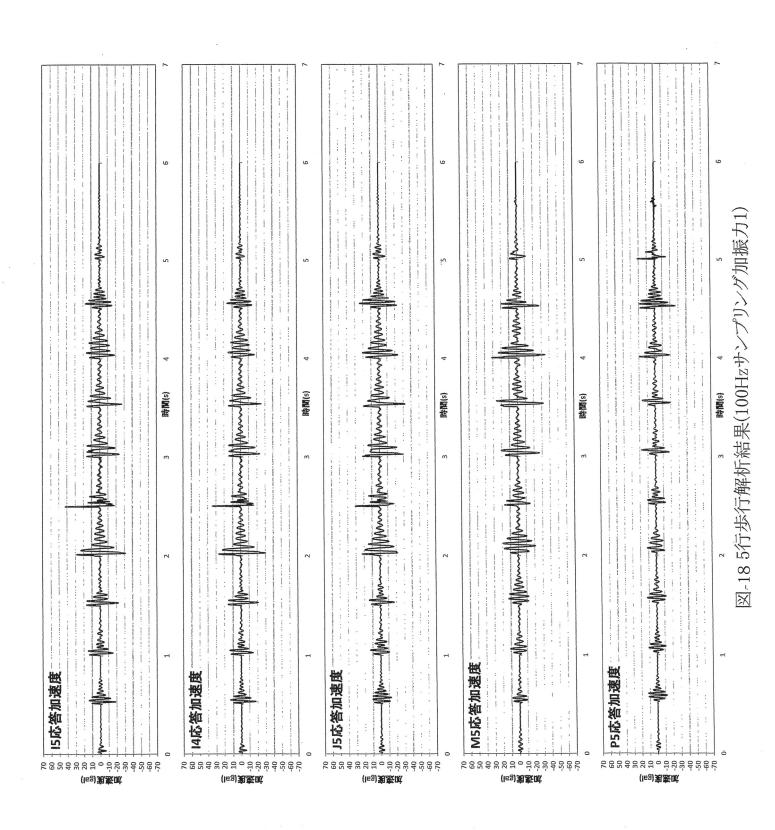
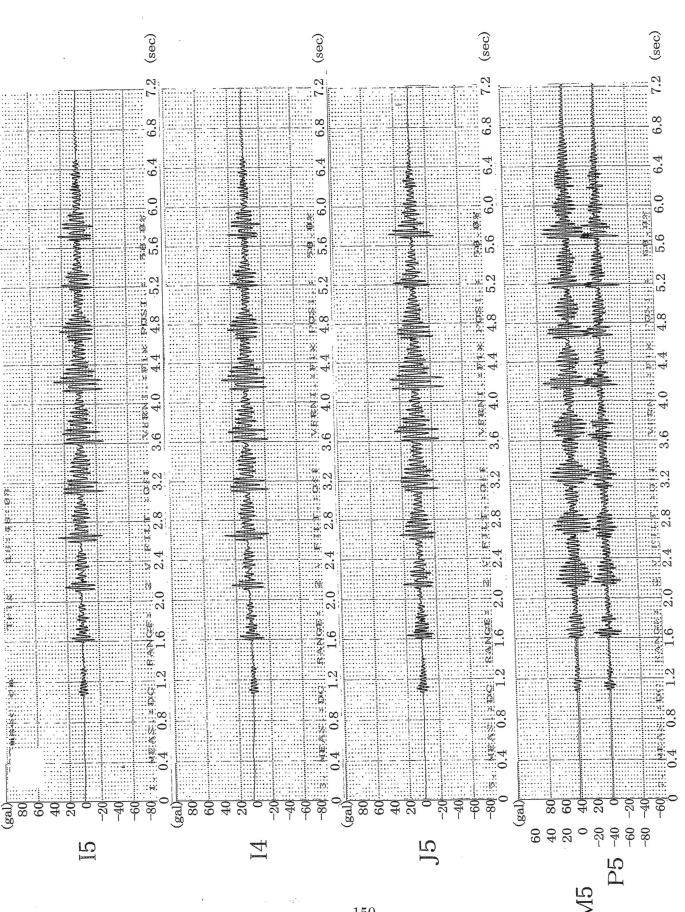
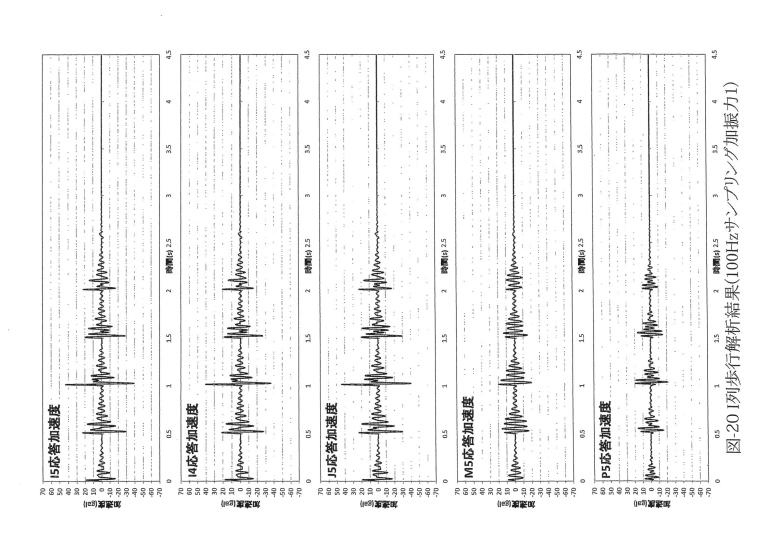
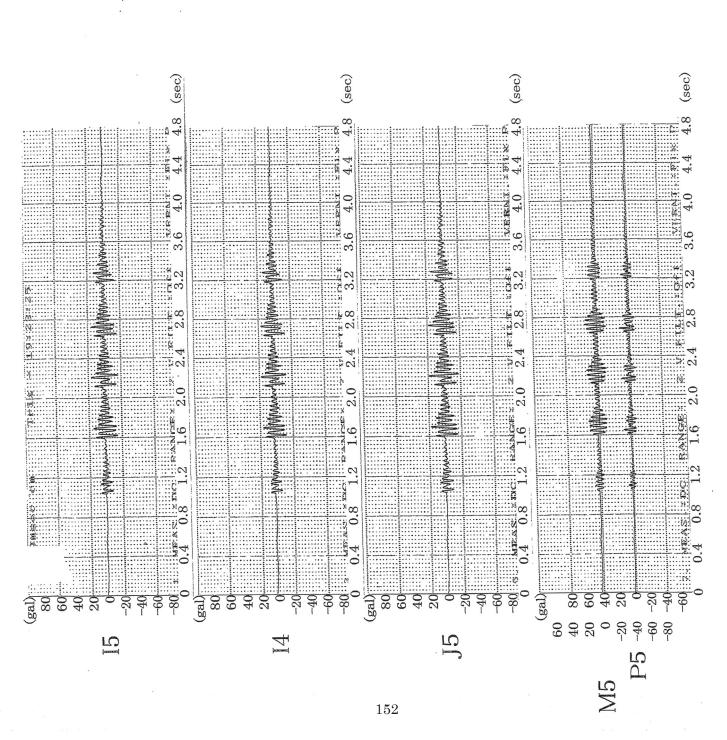


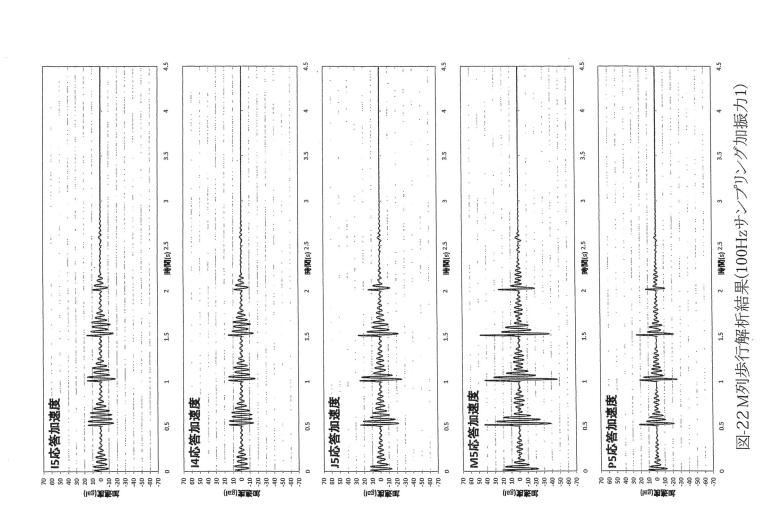
図-17 M列, P列歩行波

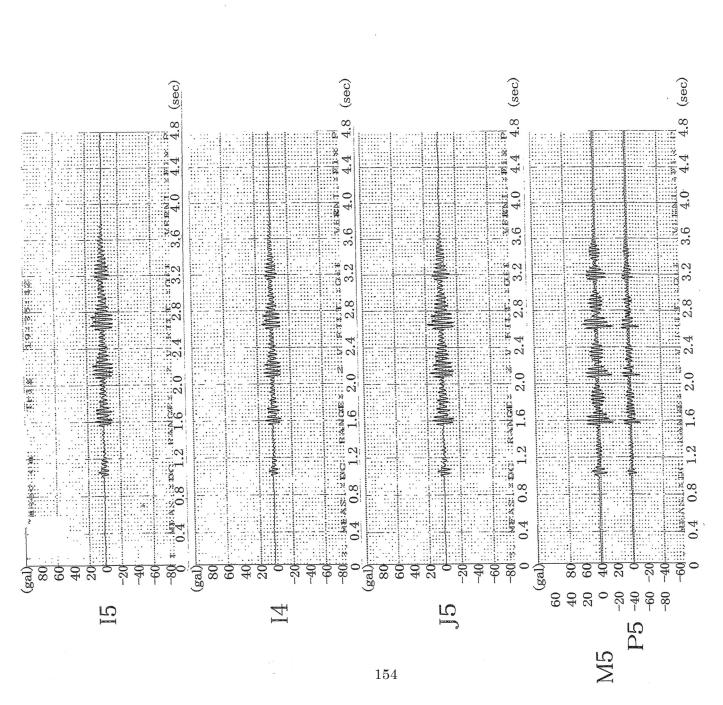

10

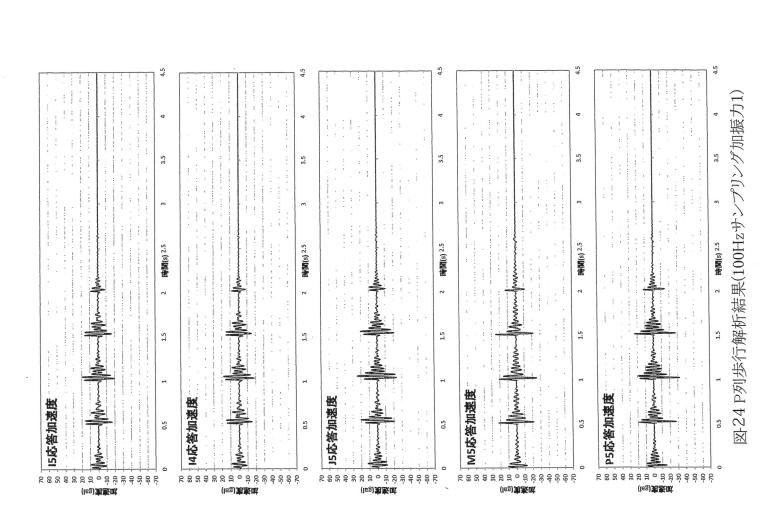

Frequency(Hz)

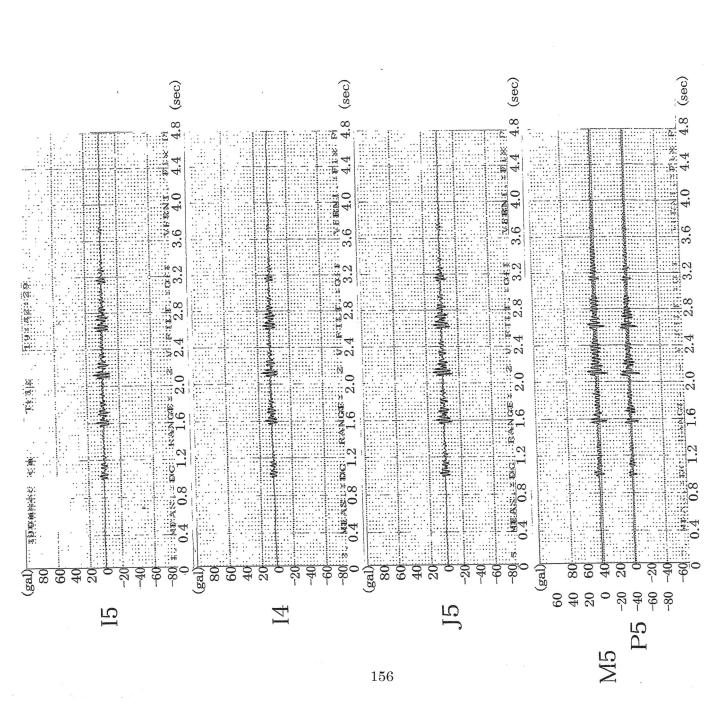

1

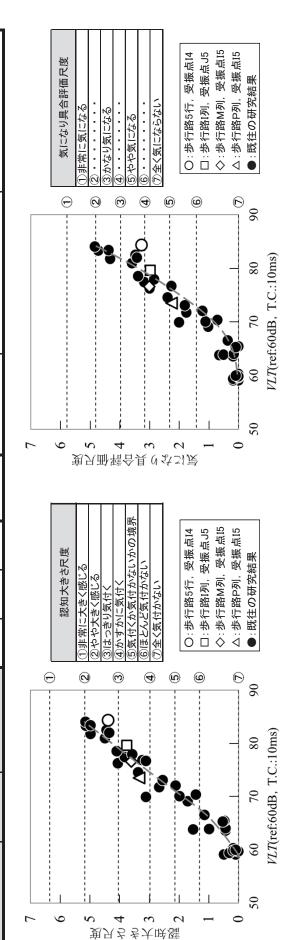

100


歩行振動解析結果









各種物理量の比較

表-4 解析結果と実測結果の物理量比較

			No.1	No.2	No.3	No.4	No.5	平均	実測値	解析/実測	HokonH
	+ 0 10mg	VLmax	09'62	76.82	77.62	77.28	78.59	77.98	81.02	0.963	72.82
5年4月	c.c. ioilis	VLT(ref60)	81.04	78.20	78.73	78.46	80.15	79.32	84.42	0.940	74.55
0114211	1 - 05	VLmax	78.32	74.90	75.67	75.43	76.00	76.07	79.22	096'0	71.86
	L.C.ZJITIS	VLT(ref60)	86.67	76.50	77.00	76.89	77.80	77.63	82.70	0.939	73.73
	+ - 10000	VLmax	76.46	80.01	78.18	75.84	77.11	77.52	78.02	0.994	72.74
加州	r.c. loms	VLT(ref60)	76.81	80.29	78.18	75.84	77.62	77.75	79.62	9/6'0	73.36
12/9/17	1000	VLmax	74.80	78.39	76.28	73.98	75.89	75.87	76.06	0.997	71.80
	L.C.Z.JITIS	VLT(ref60)	75.29	79.04	76.60	74.15	76.61	76.34	77.80	0.981	72.64
	+ 0 10,000	VLmax	72.57	72.85	74.25	74.51	75.25	73.89	75.38	0.980	69.79
MEIHA	c.c.roms	VLT(ref60)	72.57	72.85	74.53	74.79	75.25	74.00	76.60	0.966	70.27
「今ion	1000	VLmax	98'02	71.30	72.64	74.28	74.05	72.53	74.24	0.977	69.93
	L.C.Z.JIIIS	VLT(ref60)	70.43	71.30	73.02	74.68	74.05	72.70	75.64	0.961	70.44
	+ 0 10 000	VLmax	66'29	90.69	69.79	71.32	71.10	69.85	73.34	0.952	62.84
い別帯が	c.c. rollis	VLT(ref60)	66'29	90.69	69.79	71.32	71.10	69.85	73.50	0.950	62.84
- 「100mm	+ 0.05mg	VLmax	66.04	67.93	67.78	69.75	68.76	68.05	71.64	0.950	61.64
	c.c.z.JIIIs	VLT(ref60)	66.04	67.93	67.78	69.75	68.76	68.05	71.98	0.945	61.64

気になり具合 評価尺度 3~4 $3\sim4$ 3∼6 $3\sim4$ 3~4 (1) √(2) $\frac{1}{2}$ $\frac{1}{2}$ \bigcirc 5行步行 認知大きさ尺度 2~3 2~3 2~3 (S)~(3) 2~3 表一5 パラメトリックスタディ結果 (1) (2) (3) $\frac{1}{2}$ $\frac{1}{2} \sim 2$ <u>∂</u>~<u>(2)</u> 79~80 (心理学的尺度 より逆算) 1/2 T(ref:60dB T.C.:10ms) 79.32 80.04 79.00 79.76 83.66 84.13 83.62 83.63 100kgf 静的載荷 0.093 0.078 0.078 0.133 (mm) 0.084 0.084 0.139 0.139 0.133 32.0 33.2 37.0 46.4 51.7 28.4 31.6 34.8 38.8 3次 固有振動数(Hz) 25.5 23.6 19.6 21.9 26.4 2次 26.3 30.9 34.4 23.7 22.0 19.8 22.0 22.4 24.9 17.5 17.2 19.2 次 15.7 0.496(カラマツ) 0.496(カラマツ) 0.496(カラマツ) 0.496(カラマツ カラマツ 0.4(スギ) 0.4(スギ) 0.4(スギ) [g/cm³] (材質) 0.4(スギ) 驳研 スプライン接合部 有 佈 無 乍 無 セミナーハウス 測定結果 7層7プライ (規格値) [強:41.5] [弱:12.36] 7層7プライ (実験値) [強:72.5] [弱:25.9] $[ton/cm^2]$ CLT床板 (画体) 北見

4章 温熱環境

本章では、CLTを用いた建築物の温熱性能の検討結果を報告する。

4.0 温熱環境の検討

(1)目的

CLT 工法は、ひき板をならべた層を、板の方向が層ごとに直交するように重ねて接着した大判のパネルであり、主要構成は、木材と接着層である。従って、CLT 工法の断熱特性(熱伝導率)、透湿特性(透湿抵抗)、蓄熱特性(熱容量)、吸放湿特性(吸放湿率)等は、木材に準じたものと考えられる。しかし、CLT 工法のように、壁、床、屋根等の建材が、90 mm以上の木材で構成される建築物は、これまでには一般的でなく、温熱的な特徴について、確認が必要である。そして、ここでは、その特徴を設計に活かし、建築物として、省工ネ性、快適・健康性等が発揮できるよう基礎的特徴を把握する。

(2) 断熱性能基準

建築物の省エネ性に関して、国は、平成27年7月に「建築物のエネルギー消費性能の向上に関する法律」(建築物省エネ法)を公布し、建築物の省エネ基準へ、大規模非住宅から義務付けをはじめ、2020年までに全ての新築住宅・建築物に省エネ基準への適合が義務付けられる方向にある。また、省エネ性の高い建築物と高効率な設備機器や創エネ設備を組合わせ「ZEB(ゼロエネルギービル)」や「ZEH(ゼロエネルギー住宅)」への取組も加速化が予測される。

また、「2020年を見据えた住宅の高断熱化技術開発委員会」(略称 HEAT20 委員会)では、長期的視野に立ち、住宅における更なる省エネルギー化と居住者の健康維持と快適性向上のための先進的技術開発、評価手法、そして断熱化された住宅の普及啓発を目的として民間の有志により活動している。国レベルの活動ではないものの、「ZEH(ゼロエネルギー住宅)」の断熱レベルや省エネルギー基準の誘導水準としても検討されている。ここでは、CLT工法がこれからの新しい工法であることを踏まえ、現行の省エネルギー基準を上回る「HEAT20」での断熱レベルも視野に入れ検討を行う。「HEAT20」のグレード、シナリオおよび「ZEH の外皮基準」を、表 4.0-1 ~ 表 4.0-8 に示す。

CLT 工法が、これからの建築物として、ふさわしい性能を有する工法となるよう断熱性能を検討する。

(3)4章の概要

本報告書では、平成27年度に行った以下の開発研究について報告する。

1)「4.1 断熱仕様の検討」

「建築物のエネルギー消費性能の向上に関する法律」(建築物省エネ法)の地域区分における住宅及び非住宅において基準適合となる CLT 工法の目安となる断熱仕様および住宅においてはさらに高い省エネレベル (HEAT20 G1) に対応できる断熱仕様の検討を行い、断熱材の種類による断熱厚さの目安を示す。(検討ケース表4.0-9 参照) また、表面結露、内部結露を起こさないための断熱仕様、防湿仕様についても検討を行い結果を示す。

2)「4.2 CLT 建築物の温熱性能把握」

①真庭共同住宅

既存CLT 建築物の一つである真庭共同住宅において、以下の3項目の測定および調査を行った。

- ・ 外皮温熱状況の確認
- ・電力使用量の調査
- ・住まい方アンケート調査
- ②つくば実験棟の外皮性能

つくば実験棟においては、CLTパネルの接合方法として、パネルの両端に U字形引張金物が使用され、パネルを挟んで外気側と室内側を貫通するこ とになる。従って、その影響を把握するため、計算による熱橋の検討とそ れをふまえた断熱性能の検討した。

- ③つくば実験棟の結露センサー設置 竣工後の測定のため、結露センサーを設置した。
- ④実物件の温熱測定内容および情報収集等

近年 CLT を用いた建造物が、全国各地で建設や提案・計画が進められている。これらの建造物は、用途・規模・接合方法等それぞれ異なっており、その多くは木造軸組等 他構法との複合構造となっている。本項では、CLT を構造体として用いた建造物 9 棟における温熱環境に関する測定内容 及び 断熱仕様について調査した。

表 4.0-1 HEAT20 G1·G2 断熱性能推奨水準

HEAT20 G1·G2 断熱性能推奨水準 外皮平均熱貫流率 U₄値[W/(m·K)]

推奨グレ	Į«				And the second second	区分			
推奨プレ	- P	1	2	3	4	5	6	7 .	8
HEAT20	G1	0.34	0.34	0.38	0.46	0.48	0.56	0.56	1
HEAT20	G2	0.28	0.28	0.28	0.34	0.34	0.46	0.46	-

表 4.0-2 H25 年省エネルギー基準

改正後の省エネルギー基準 [平成25年基準]

地域区分	1	2	3	4	5	6	7	8
外皮平均熱質流率の基準値(W/(m²·K)]	0.46	0.46	0.56	0.75	0.87	0.87	0.87	
冷房期の平均日射熱取得率の基準値				_	3.0	2.8	2.7	3.2

表 4.0-3 ZEH 外皮基準

地域区分	1・2・3地域		4-5-6-7地域		8地域
断熱区分(UA値)	0.4以下		0.6以下		なし
地域区分	1・2・3・4地域	5地域	6地域	7地域	8地域
η A値	なし	3.0以下	2.8以下	2.7以下	3.2以下

HEAT20 外皮性能グレードと住宅シナリオ (2015年12月版)

表 4.0-4 想定する暖房方式

	地域区分	1・2 地域		3 地域	4	4~7 地域
	LDK	連続暖		e続暖房 間、休日 19 時間】	在室時暖房	【平日:14 時間】【休日:13 時間】
	主寝室	房 【24 時	在室時暖房	【全日:9 時間】	(深夜・日中は	【全日:3 時間】
暖房方式	子供室	間】	(深夜・日中は 除く)	● 【平日:3 時間】 【休日:7·10 時間】	除く)	● 【平日:3 時間】 【休日:7·10 時間】
時間】	トイレ廊下浴室洗面室	暖房無し	B	爰房無し		暖房無し

NEB 冬期間の室内温度環境

表 4.0-5 冬期間、住宅内の体感温度*1が 15℃未満となる割合 (表 4.0-5 の暖房式におけるシミュレーション)

外皮性能グレード	1,2 地域	3 地域	4~7 地域
(参考)平成 25 年基準レベルの住宅	4%程度	25%程度	30%程度
G1	3%程度	15%程度	20%程度
G2	2%程度	8%程度	15%程度

表 4.0-6 冬期間の最低の体感温度*1 (表 4.0-5 の暖房式におけるシミュレーション)

外皮性能グレード	1,2 地域	3 地域	4~7 地域
(参考)平成 25 年基準レベルの住宅	概ね 10°Cを下回らない	概ね 8℃を	下回らない
G1	概ね 13°Cを下回らない	概ね 10℃を	下回らない
G2	概ね 15℃を下回らない	概ね 13℃を	下回らない

EB 省エネルギー性能

表 4.0-7・4.0-8 は、H25 年基準レベルの住宅(表 4.0-4 に示す暖房方式)の暖房負荷との増 減比率を示したものです。

外皮性能を G1・G2 レベルに向上させた住宅では、高効率設備機器の採用、放射環境の向上により暖房設定温度を低くするケースが多いこと、暖房時間の短縮などの住まい方などの工夫により、表に示す値よりさらに省エネルギー効果が期待できます。

表 4.0-7 表 1 の暖房方式における暖房負荷*2 削減率 (平成 25 年基準レベルの住宅との比較)

外皮性能グレード	1,2 地域	3 地域	4~7 地域
G1	約 20%削減	約 30	%削減
G2	約 30%削減	約 40%削減	約 50%削減

表 4.0-8 全館連続暖房方式における暖房負荷*2削減率 (平成 25 年基準レベルの住宅で表 1 の暖房方式とした住宅との比較)

外皮性能グレード	1,2 地域	3 地域	4,5 地域	6,7 地域
G1	約 10%削減	約 10%増加	約 30%増加	約 50%増加
G2	約 20%削減	約 10%削減	H25 年基準レベルと概ね同等 可	等のエネルギーで全館暖房が 能

注)上記値は、各地域の代表都市・自立循環型一般型モデル住宅にて検証したシミュレーション結果です。日照条件や地域の気候特性、住宅プランにより設定 $\mathbf{U}_{\mathbb{A}}$ 値での実現度合は異なります。

出典:「HEAT20」HP

表 4.0-9 断熱仕様の検討ケース

					地域			
		1.2	3	4	5	6	7	8
戸建住宅	H25 年基準					O 1)		
	G1 (HEAT20)	(D ²⁾				(a)	2)	
	G2 (HEAT20)							
共同住宅	H25 年基準					○ 3)		
非住宅	H25 年基準					$\bigcirc^{4)}$		

- 1) H25 基準レベルの仕様案に熱橋を考慮した仕様案。
- 2) 戸建においては、さらに高い G1 レベルの仕様案(1,2,6 地域)。
- 3) 共同住宅については、安全側にある戸建住宅の仕様 1) とする。
- 4) 非住宅については、モデル、設備を決めて、一次エネルギー基準値をクリアする建物仕様案。

4.1 断熱仕様の検討

4.1.1 住宅における各部位の仕様ごとに必要な断熱性能を試算(1)

(5~7地域のH25年基準適合を検証)

1)目的

接合金物の熱損失を含めた場合の断熱仕様の H25 省エネ基準適合確認を行った。

**1H25 省エネ基準: 5~7地域における外皮平均熱貫流率 (U_A) の基準値は 0.87 である。 2)条件

①断熱材厚設定条件

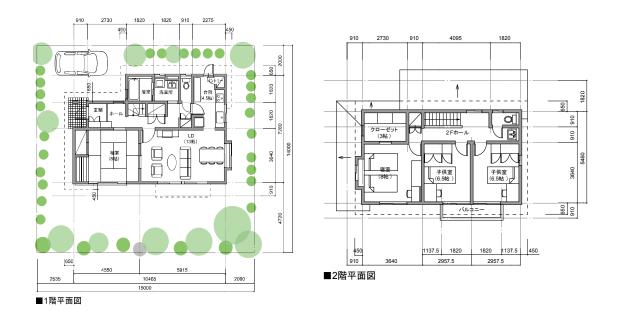
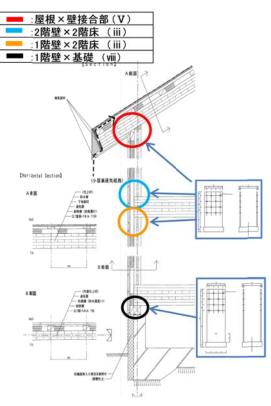
- ・各断熱材の厚みは、U値を満たすための最低厚みを5mm単位で切り上げた。
- ・各製品とも一般流通製品の最低厚み以下の値があるが、そのまま記載した。
- ・厚み算出に用いた各断熱材の熱伝導率は下表の通りである。
- ・一般に流通がある各製品の最低厚み (メーカーのサイトより)。

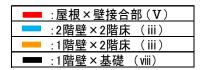
表 4.1-1 各断熱材の熱伝導率

製品	熱伝導率 λ [W/(m·K)]	一般品最低 厚み [mm]
GW32K	0.036	25
XPS1種	0.040	15
XPS3種	0.028	20
PF	0.020	20

③住宅条件

検証に用いた住宅は、自立型循環型住宅設計モデルプラン (一般モデル・延床 120.08 ㎡) で、温暖地モデル (窓面積 28.69 ㎡) を用いた。


図 4.1-1 自立循環型住宅設計モデルプラン (一般モデル・延床 120.08 ㎡) ※温暖地モデル (窓面積 28.69 ㎡) とした。

④熱橋の種類と位置 熱橋の種類と位置を以下に示す。

※妻壁部分もCLTとして試算した。 ※接合金物は「つくば実験棟」同様を想定した。

図 4.1-2 熱橋の種類と位置 (矩計図)

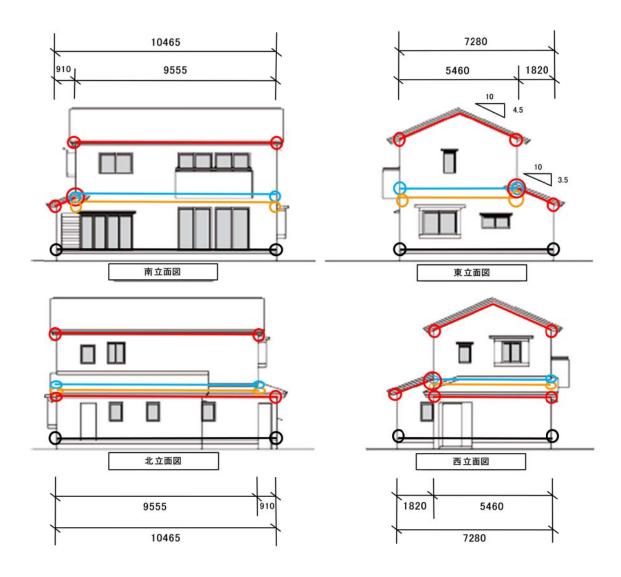


図 4.1-3 熱橋の種類と位置(立面図)

3) 5~7地域における断熱仕様

5~7地域における H25 年基準適合の壁断熱強化型と基礎断熱強化型の断熱仕様を以下に示す。

表 4.1-2 壁断熱強化型 (5~7地域)

【計算結果】U△:0.86

	【計算結果】U _A : 0.86						
		壁の断熱厚を増やす					
【基礎断熱仕様】		窓の断熱性能を4地域レベル(U3.49) ⇒そのときの各部位最低U値組合わせ例					
	U値	想定CLT厚	断熱仕様例				
窓	3.49		LowE(A6) +アルミ樹脂複合				
		CLT150mm	GW32K- <mark>30</mark> mm				
屋根	0.48		XPS1種-30mm				
庄 似	0.40		XPS3種-20mm				
			PF-15mm				
			GW32K-25mm				
壁	0.630	CLT90mm	XPS1種- <mark>30</mark> mm				
_			XPS3種-20mm				
			PF-15mm				
基礎断熱	0.75		XPS3種−15mm				
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋				
2階壁×2階床(iii)	Ψ0.020		金物熱橋				
1階壁×2階床(1階屋根)(iii)	Ψ0.020		金物熱橋				
1階壁×基礎(viii)	Ψ0.497		金物熱橋				

[※]参考 η_A 基準値:2.8, 【計算結果】 η_A :2.5(η_A 値は庇の出寸法を考慮して算出) ※壁・屋根のU値は断熱材の熱抵抗値×0.9とすることで木熱橋を考慮した。

表 4.1-3 基礎断熱強化型 (5~7地域)

【計算結果】UA: 0.87

			【引昇和木】UA: U.O/			
		基礎の断熱	厚を増やす			
【基礎断熱仕様】		窓の断熱性能を4地域レベル(U3.49) ⇒そのときの各部位最低U値組合わせ例				
	U値	想定CLT厚	断熱仕様例			
窓	3.49		LowE(A6)			
765	0.40		+アルミ樹脂複合			
		CLT150mm	GW32K- <mark>30</mark> mm			
屋根	0.48		XPS1種-30mm			
庄1以	0.40		XPS3種-20mm			
			PF-15mm			
			GW32K-25mm			
壁	0.68	CLT90mm	XPS1種-25mm			
<u> </u>	0.00		XPS3種-20mm			
			PF-15mm			
基礎断熱	0.620		XPS3種−30mm			
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋			
2階壁×2階床(iii)	Ψ0.020		金物熱橋			
1階壁×2階床(1階屋根)(iii)	Ψ0.020		金物熱橋			
1階壁×基礎(viii)	Ψ0.497		金物熱橋			

[※]参考 η_A 基準値:2.8、【計算結果】 η_A :2.5(η_A 値は庇の出寸法を考慮して算出) ※壁・屋根のU値は断熱材の熱抵抗値×0.9とすることで木熱橋を考慮した。

4) 5~7地域における外皮性能計算結果と根拠

5~7地域における壁断熱強化型と基礎断熱強化型の外皮性能計算結果と計算根拠を 以下に示す。

①壁断熱強化型

【計算結果】

表 4.1-4 壁断熱強化型の外皮性能計算結果

住戸名称	地域区分			外皮性能	計算結果		
		U _A	η _A (冷房期)	q		m _C	m _H
壁強化タイプ		[W/(m²·K)]	[-]	[W/K]		[W/(W/m³)]	[W/(W/m³)]
基準モデル	6地域	0.86	2.5	287.5		8.20	14.25
			,	ì			

基準値	0.87	2.8
基準適否	OK	OK

【計算根拠】

表 4.1-5 q · U_Aの算出表

			Α	L	U	Н	$A(L) \times U \times H$	
	部位	隣接空間	面積	長さ	U:熱貫流率	温度差係数	貫流熱損失	
			[㎡]	[m]	[W/(m*K)]	[-]	[W/K]	
					[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+PF15等	外気	73.89	ı	0.480	1.00	35.47	
外壁(開口部面積を除く)	CLT90+PF15等	外気	162.84	ı	0.630	1.00	102.59	
開口部	ドア(玄関・キッチン)	外気	3.51	ı	4.65	1.00	16.32	
	窓 WW	外気	28.69	ı	3.49	1.00	100.14	
土間床等	土間床面積	-	67.90	-	-	-	-	
	土間外周 XPS3種 15	外気	-	35.49	0.750	1.00	26.62	躯体+窓
	(玄関)	床下	-	0.000		0.70	0.00	281.14
v)屋根×壁接合部			(金物)	11.6	0.005	1.00	0.06	
iii)90幅_2階壁×2階床(1階月	量根)		(金物)	6.8	0.020	1.00	0.14	
iii)90幅 1階壁×2階床(1階	屋根)		(金物)	6.8	0.020	1.00	0.14	
viii) 1階壁×基礎			(金物)	8.00	0.497	1.00	3.98	金物+木熱橋
v)屋根×壁接合部			木部	51.83	0.04	1.00	2.07	6.38
		ΣΑ	336.84			q:	287.52	= Σ (A·U·H)
						U.:	0.854	= Σ (A•U•H) / Σ A

表 4.1-6 金物長さ

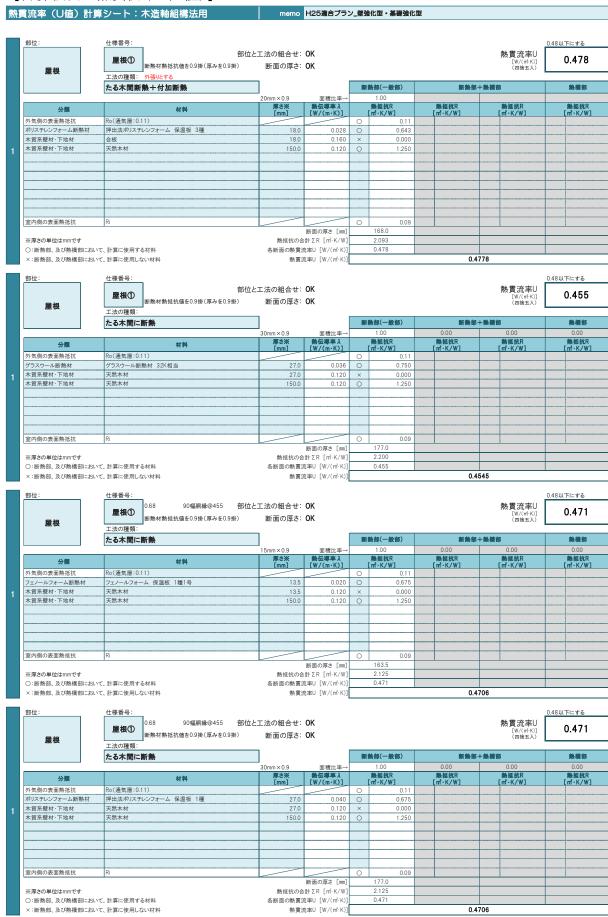
	方位	壁長さ	パネル数	金物数	金物長さ	金物長さ計
	刀垭			—		
		[m]	(910幅/1P)	2個/1P	0.1m/1個	0.1m/1個
v)屋根×壁接合部	東	7.92	9	18	1.8	11.60
v)屋根×壁接合部	北	20.02	22	44	4.4	
v)屋根×壁接合部	西西	13.38	15	30	3.0	
v)屋根×壁接合部	南	10.52	12	24	2.4	
iii)2階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)2階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)2階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)2階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)1階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)1階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
viii)1階壁×基礎	東	7.280	8	16	1.6	8.00
viii)1階壁×基礎	北	10.465	12	24	2.4	
viii)1階壁×基礎	西	7.280	8	16	1.6	
viii)1階壁×基礎	南	10.465	12	24	2.4	

表 4.1-7 m_C・η_A (冷房期) の算出表

			ν	Α	U	η (U × 0.034)	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [㎡]	U:熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m•K)]			
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	屋根・上面	1.000	73.89	0.480	0.016	1.206	
外壁(開口部面積を除く)	CLT90+GW32K 55 又は	南	0.434	37.25	0.630	0.021	0.346	
	CLT90+XPS3種 45 又は	東	0.512	36.19	0.630		0.397	İ
	CLT90+PF 35 等	北	0.341	52.17	0.630	0.021	0.381	
		西	0.504	37.24	0.630	0.021	0.402	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	4.65	0.158	0.280	
	窓 WW	-	-	28.69	庇軒考慮の言	+算結果より→	5.147	躯体+窓
土間床等	土間床面積	-	0	67.90	-	-	-	8.16
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003	
		西	0.504	3.00	0.005	0.00017	0.0003	
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020			
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020			
		北	0.341	2.40	0.020		0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020		0.0007	
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040			
		北	0.341	20.0	0.040	0.00136		
		西	0.504	13.38	0.040			金物+木熱橋
		南	0.434	10.52	0.040	0.00136		
			ΣΑ	336.84		m _c :		$=\Sigma(\nu \times A \times \eta)$
						η▲(冷房期):	2.43314	= $\Sigma(\nu \times A \times \eta)/\Sigma A \times 10$

表 4.1-8 窓の日射熱取得量(冷房期)の算出表

7DAI	=1.52.04	+4	ν +45*	A == 1±	η Detternant	fc	η c(η × fc)	ν×Α×ης
窓No.	設置壁	方位	方位係数	面積	日射熱取得率		日射熱取得率	
				[m²]	(補正前)	補正係数	(補正後)	[W/K]
					[-]	[-]	[-]	
1	LD	南	0.434	3.47	0.64	0.549	0.351	0.528
2	LD	南	0.434	3.47	0.64	0.549	0.351	0.528
3	和室	南	0.434	4.59	0.64	0.635	0.406	0.808
4	寝室	南	0.434	1.73	0.64	0.600	0.384	0.289
5	子供室1	南	0.434	3.22	0.64	0.651	0.417	0.582
6	子供室2	南	0.434	3.22	0.64	0.651	0.417	0.582
7	LD	東	0.512	2.15	0.64	0.778	0.498	0.546
8	台所	東	0.512	0.98	0.64	0.575	0.368	0.184
9	子供室東	東	0.512	0.66	0.64	0.707	0.452	0.153
10	トイレ	北	0.341	0.54	0.64	0.659	0.422	0.078
11	洗面所	北	0.341	0.54	0.64	0.659	0.422	0.078
12	ホール	北	0.341	0.54	0.64	0.659	0.422	0.078
13	ホール	北	0.341	0.99	0.64	0.714	0.457	0.154
14	トイレ	北	0.341	0.54	0.64	0.659	0.422	0.078
15	浴室	西	0.504	0.54	0.64	0.698	0.447	0.122
16	寝室	西	0.504	0.99	0.64	0.762	0.487	0.243
17	クローゼット	西	0.504	0.54	0.64	0.677	0.434	0.118
					-		·	-
			窓ΣΑ	28.69	7	窓の日射熱取得	量(冷房期):	5.147


表 4.1-9 m_H・η_A (暖房期) の算出表

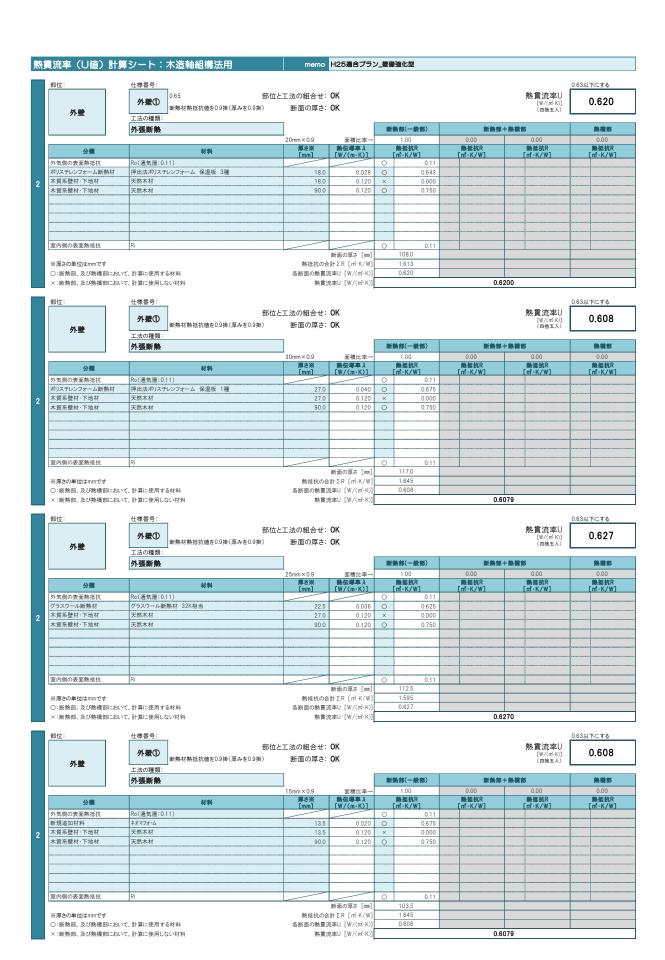

			ν	Α	U	η (U × 0.034)	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [㎡]	U:熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ [m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ [m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	屋根・上面	1.000	73.89	0.480	0.016	1.206	
外壁(開口部面積を除く)		南	0.434	37.25	0.630	0.021	0.346	
	CLT90+XPS3種 45 又は	東	0.512	36.19	0.630	0.021	0.397	
	CLT90+PF 35 等	北	0.341	52.17	0.630	0.021	0.381	
		西	0.504	37.24	0.630	0.021	0.402	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	4.65	0.158	0.280	
	窓 WW	-	-	28.69	庇軒考慮の計	†算結果より→	11.201	躯体+窓
土間床等	土間床面積	-	0	67.90	-	-	-	14.21
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003	
		西	0.504	3.00	0.005	0.00017	0.0003	
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006	
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020	0.00068	0.0007	
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055	
		北	0.341	20.0	0.040	0.00136	0.0093	
		西	0.504	13.38	0.040	0.00136	0.0092	金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
			ΣΑ	336.84		m _C :	14.250	$=\Sigma(\nu \times A \times \eta)$
						η▲(暖房期):	4.23	= $\Sigma(\nu \times A \times \eta)/\Sigma A \times 10$

表 4.1-10 窓の日射熱取得量(暖房期)の算出表

			u H	Α	η	fH	$\eta \circ (\eta \times fH)$	$\nu H \times A \times \eta H$	
窓No.	室名	方位	方位係数	面積	日射熱取得率		日射熱取得率	日射熱取得量	
				[m²]	(補正前)	正係数	(補正後)	[W/K]	
					[-]	[-]	[-]		
1	LD	南	0.936	3.47	0.64	0.75	0.478	1.551	
2	LD	南	0.936	3.47	0.64	0.75	0.478	1.551	
3	和室	南	0.936	4.59	0.64	0.78	0.499	2.144	
4	·寝室	南	0.936	1.73	0.64	0.81	0.521	0.844	
5	子供室1	南	0.936	3.22	0.64	0.84	0.536	1.613	
6	子供室2	南	0.936	3.22	0.64	0.84	0.536	1.613	
7	LD	東	0.579	2.15	0.64	0.78	0.496	0.616	
8	台所	東	0.579	0.98	0.64	0.59	0.380	0.215	
9	子供室東	東	0.579	0.66	0.64	0.72	0.460	0.176	
10	トイレ	北	0.261	0.54	0.64	0.69	0.442	0.062	
11	洗面所	北	0.261	0.54	0.64	0.69	0.442	0.062	
12	ホール	北	0.261	0.54	0.64	0.69	0.442	0.062	
13	ホール	北	0.261	0.99	0.64	0.75	0.477	0.123	
14	トイレ	北	0.261	0.54	0.64	0.69	0.442	0.062	
15	浴室	西	0.523	0.54	0.64	0.72	0.458	0.129	
16	寝室	西	0.523	0.99	0.64	0.76	0.486	0.252	
17	クローゼット	西	0.523	0.54	0.64	0.69	0.442	0.125	
			窓ΣA	28.69	,	窓の日射熱取得	量(暖房期):	11.201	= 5

【計算根拠 熱貫流率(U値)】

[基礎断熱]

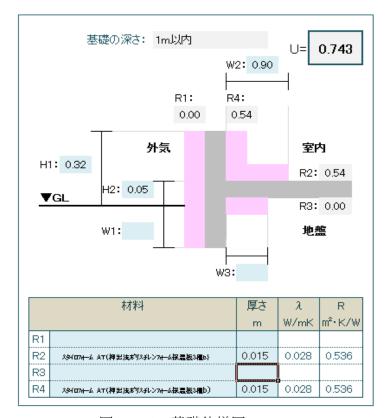


図 4.1-4 基礎仕様図

4.1.2 住宅における各部位の仕様ごとに必要な断熱性能の試算(2)

(1・2地域と6地域のG1グレード適合を検証)

1)目的

HEAT20^{*1}の G1 グレード^{*2} を満たす各部位の断熱仕様の確認を行った。

**1 HEAT20:住宅の省エネルギー化のための技術開発、評価手法開発、普及啓発を目的とした民間団体である。省エネ基準や性能表示の断熱等級4より上の外皮グレード(G1、G2)を提案している。

**2 G1 グレード:外皮平均熱貫流率(U_A)の基準値を地域区分ごとに設定している。 U_A 基準値は、1・2 地域が 0.34、6 地域が 0.56 である。

2) 条件

①計算条件(1・2地域と6地域共通)

- ・CLT 仕様は、屋根:150mm 厚、壁:90mm 厚とした。
- ・妻壁部分も CLT を想定した。
- ・屋根断熱、基礎断熱とした。
- ・「接合金物」と「屋根と壁接合部の木熱橋」を考慮した。
- ・「接合金物」と「屋根と壁接合部の木熱橋」の熱損失値は「つくば実験棟」で算出 の値を用いた。

②断熱材厚設定条件(1・2地域と6地域共通)

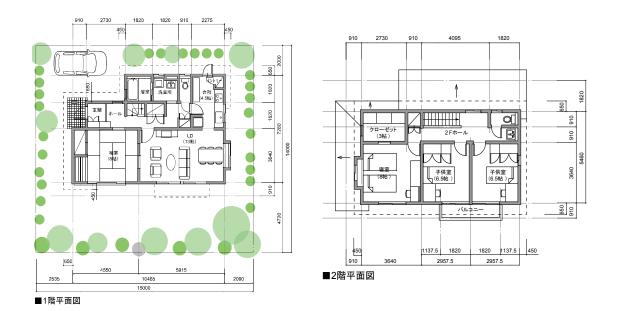
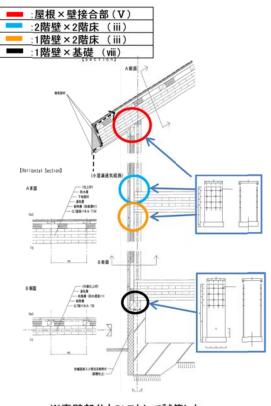
- ・各断熱材の厚みは、U値を満たすための最低厚みを5mm単位で切り上げた。
- ・厚み算出に用いた各断熱材の熱伝導率は表1の通りである。

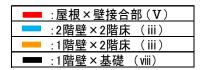
表 4.1-11 各断熱材の熱伝導率

製品	熱伝導率 λ [W/(m·K)]	一般品最低厚 [mm]
GW32K	0.036	25
XPS3種	0.028	20
PF	0.020	20

③住宅条件

検証に用いた住宅は、 $1 \cdot 2$ 地域と6地域のいずれも自立型循環型住宅設計モデルプラン (一般モデル・延床 120.08 ㎡) である。なお、 $1 \cdot 2$ 地域は寒冷地モデル (窓面積 21.99 ㎡) を、6地域は温暖地モデル (窓面積 28.69 ㎡) を用いた。


図 4.1-5 自立循環型住宅設計モデルプラン (一般モデル・延床 120.08 ㎡) ※1・2地域は寒冷地モデル (窓面積 21.99 ㎡) とし、6 地域は温暖地モデル (窓面積 28.69 ㎡) とした。

④熱橋の種類と位置 (1・2地域と6地域共通) 熱橋の種類と位置を以下に示す。

※妻壁部分もCLTとして試算した。 ※接合金物は「つくば実験棟」同様を想定した。

図 4.1-6 熱橋の種類と位置(矩計図)

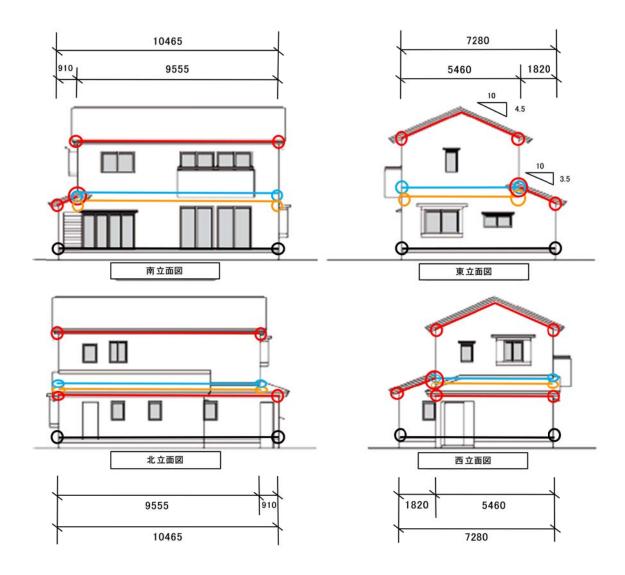


図 4.1-7 熱橋の種類と位置(立面図)

※立面図は6地域の温暖地モデル(窓面積 28.69 ㎡)のものだが、6地域の温暖地モデルと $1 \cdot 2$ 地域の寒冷地モデル(窓面積 1.99 ㎡)は共に「熱橋の種類と位置」は共通である。

3) 1・2地域における断熱仕様

1・2地域における G1 グレード適合の躯体(屋根・壁)断熱強化型および開口部断熱強化型の断熱仕様を以下に示す。

表 4.1-12 躯体(屋根・壁)断熱強化型 (1・2地域)

【計算結果】UA: 0.34

【計算結果】U _A : <mark>U</mark>								
		屋根・壁の	断熱厚を増やす					
▼ 甘 7林 炒广表力 /丄 + 关 ▼	・窓の断熱性能と基礎の断熱性能を設定し、							
【基礎断熱仕様】	⇒基準	⇒基準U₄値に適合する屋根、壁のU値を検討						
	U値	想定CLT厚	断熱仕様例					
			樹脂サッシ					
窓	1.90	-	LowE複層(G12以上)					
			日射取得型					
			GW32K- <mark>250</mark> mm					
屋根	0.13	CLT150mm	XPS3種− <mark>195</mark> mm					
			PF-140mm					
		CLT90mm	GW32K-1 <mark>55</mark> mm					
壁	0.21		XPS3種−1 <mark>20</mark> mm					
			PF- <mark>85</mark> mm					
基礎断熱	0.37	-	XPS3種−100mm					
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋					
2階壁×2階床(iii)	Ψ0.020		金物熱橋					
1階壁×2階床(1階屋根)(iii)	Ψ0.020	_	金物熱橋					
1階壁×基礎(viii)	Ψ0.497		金物熱橋					

[※]壁、屋根のU値は断熱材の熱抵抗値×0.9とすることで木熱橋を考慮した。

表 4.1-13 開口部断熱強化型 (1·2地域)

【計質結果】|| ... 0.34

	【計昇桁未】UA:U.34								
		開口部の断熱	独性能を上げる						
▼ ★ 7林 W广表 九 / ↓ + 关 】	・窓の断熱性能と基礎の断熱性能を設定し、								
【基礎断熱仕様】	⇒基準Uム値に適合する屋根、壁のU値を検討								
	U値	想定CLT厚断熱仕様例							
			樹脂サッシ						
窓	1.6	-	ダブルLowE複層(G7以上×2)						
			日射取得型						
			GW32K- <mark>250</mark> mm						
屋根	0.13	CLT150mm	XPS3種− <mark>195</mark> mm						
			PF-140mm						
			GW32K-115mm						
壁	0.26	CLT90mm	XPS3種- <mark>90</mark> mm						
			PF-65mm						
基礎断熱	0.37	-	XPS3種−100mm						
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋						
2階壁×2階床(iii)	Ψ0.020		金物熱橋						
1階壁×2階床(1階屋根)(iii)	Ψ0.020	_	金物熱橋						
1階壁×基礎(viii)	Ψ0.497		金物熱橋						

[※]壁、屋根のU値は断熱材の熱抵抗値×0.9とすることで木熱橋を考慮した。

4) 1・2地域における外皮性能計算結果と根拠

1・2地域における躯体(屋根・壁)断熱強化型および開口部断熱強化型の外皮性能計算結果と計算根拠を以下に示す。

①躯体(屋根·壁)断熱強化型

【計算結果】

表 4.1-14 開口部断熱強化型の外皮性能計算結果

住戸名称	地域区分	外皮性能計算結果					
		U _A	η _A (冷房期)	q		m _C	m _H
躯体強化タイプ		[W/(m³·K)]	[-]	[W/K]		[W/(W/m²)]	[W/(W/m³)]
基準モデル	1・2地域	0.34	2.1	111.7		6.75	6.63

基準値	0.34	ı
基準適否	OK	OK

【計算根拠】

表 4.1-15 q ・U_Aの算出表

			Α	L	U	Н	$A(L) \times U \times H$	_
	部位	隣接空間	面積 [㎡]	長さ [m]	U:熱貫流率 [W/(㎡·K)] [W/(m·K)]	温度差係数 [-]	貫流熱損失 [W/K]	
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は CLT150+PF 140 等	外気	73.89	1	0.130	1.00	9.61	
外壁(開口部面積を除く)	CLT90+GW32K 155 又は CLT90+XPS3種 120 又は CLT90+PF 85 等	外気	162.84	1	0.210	1.00	34.20	
開口部	ドア(玄関・キッチン)	外気	3.51	-	1.90	1.00	6.67	
	窓 WW	外気	21.99	-	1.90	1.00	41.78	
土間床等	土間床面積	-	67.90	-	-	1	-	
	土間外周 XPS3種 100	外気	-	35.49	0.370	1.00	13.13	躯体+窓
	(玄関)	床下	-	0.000		0.70	0.00	105.38
v)屋根×壁接合部			(金物)	11.6	0.005	0.00	0.00	
iii)90幅_2階壁×2階床(1階月	量根)		(金物)	6.8	0.020	1.00	0.14	
iii)90幅 1階壁×2階床(1階	屋根)		(金物)	6.8	0.020	1.00	0.14	
viii) 1階壁×基礎		(金物)	8.00	0.497	1.00	3.98	金物+木熱橋	
v)屋根×壁接合部	_		木部	51.83	0.04	1.00	2.07	6.32
		ΣΑ	330.14			q:	111.71	= Σ (A • U • H)
				•		U _A :	0.338358	= Σ (A·U·H) / ΣA

表 4.1-16 金物長さ

	方位	壁長さ	パネル数	金物数	金物長さ	金物長さ計
		[m]	(910幅/1P)	2個/1P	0.1m/1個	0.1m/1個
v)屋根×壁接合部	東	7.92	9	18	1.8	11.60
v)屋根×壁接合部	北	20.02	22	44	4.4	
v)屋根×壁接合部	西	13.38	15	30	3.0	
v)屋根×壁接合部	南	10.52	12	24	2.4	
iii)2階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)2階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)2階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)2階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)1階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)1階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
viii)1階壁×基礎	東	7.280	8	16	1.6	8.00
viii)1階壁×基礎	北	10.465	12	24	2.4	
viii)1階壁×基礎	西	7.280	8	16	1.6	
viii)1階壁×基礎	南	10.465	12	24	2.4	

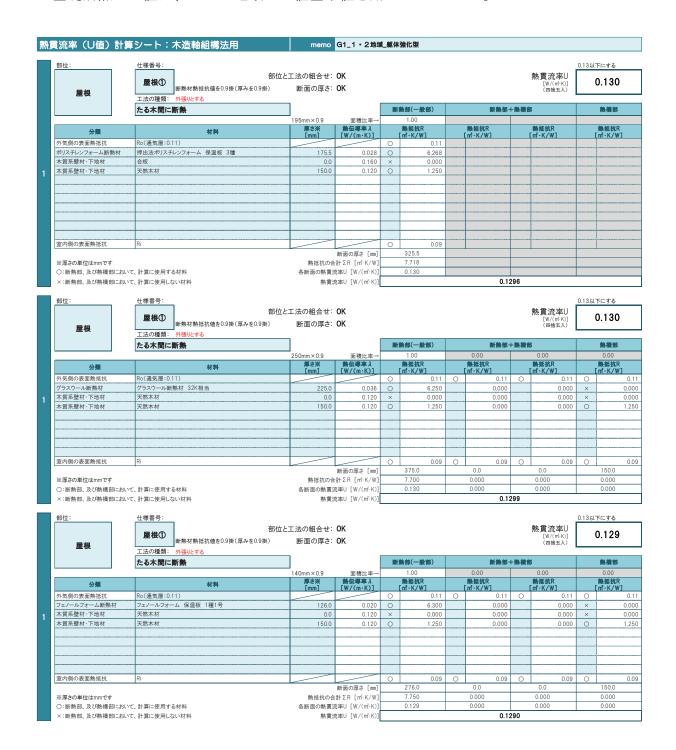
表 4.1-17 m_C・η_Λ(冷房期)の算出表

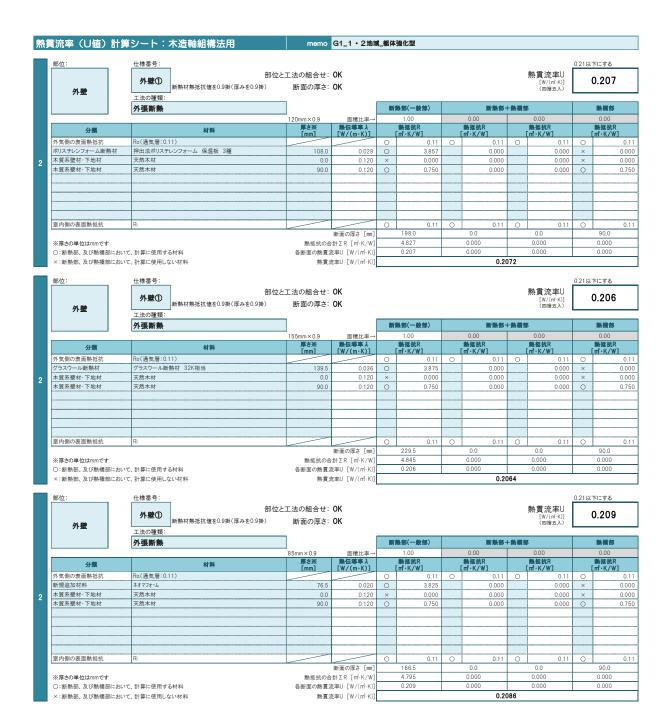
			ν	Α	U	η (U × 0.034)	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [m]	U:熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は CLT150+PF 140 等	屋根·上面	1.000	73.89	0.130	0.004	0.327	
外壁(開口部面積を除く)	CLT90+GW32K 155 又は	南	0.434	37.25	0.210	0.007	0.115	1
	CLT90+XPS3種 120 又は	東	0.512	36.19	0.210	0.007	0.132	1
	CLT90+PF 85 等	北	0.341	52.17	0.210	0.007	0.127	1
		西	0.504	37.24	0.210	0.007	0.134	1
開口部	ドア(玄関・キッチン)	西	0.504	3.51	1.90	0.065	0.114]
	窓 WW	-	-	21.99	庇軒考慮の言	計算結果より→	5.766	躯体+窓
土間床等	土間床面積	-	0	67.90	=	-	=	6.72
屋根×壁接合部	屋根×壁接合部		0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003	
				3.00	0.005	0.00017	0.0003	
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20				
1階壁×2階床(1階屋根)		東	0.512	1.20				4
		北	0.341	2.20				
		西	0.504	1.20				-
		南	0.434	2.20	0.020			-
1階壁×基礎		東	0.512	1.60				4
		北	0.341	2.40	0.020			-
		西	0.504	1.60	0.020			
		東	0.434	2.40				
木部熱橋 v) 屋根×壁	木部熱橋 v) 屋根×壁接合部		0.512	7.92				-
		北	0.341	20.0				4
		西	0.504	13.38	0.040			金物+木熱橋
		南	0.434	10.52	0.040	0.00136		
			ΣΑ	330.14		m _C :		$= \Sigma(\nu \times A \times \eta)$
						η Α(冷房期):	2.05	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$

表 4.1-18 窓の日射熱取得量(冷房期)の算出表

			ν	Α	η	fc	$\eta c(\eta \times fc)$	ν×Α×ης
窓No.	設置壁	方位	方位係数	 面積	日射熱取得率	取得日射量	日射熱取得率	
/EX140.	队但王	75 12	73 12 1/1 32	[m²]	(補正前)	補正係数	(補正後)	[W/K]
				L3	[-]	[-]	[-]	[11/10]
1	LD	南	0.434	2.97	0.64	0.930	0.595	0.767
•		173	0.101	2.07	0.01	0.000	0.000	0.707
2	LD	南	0.434	2.15	0.64	0.930	0.595	0.554
3	和室	南	0.434	2.15	0.64	0.930	0.595	0.554
4	寝室	南	0.434	1.82	0.64	0.930	0.595	0.468
5	子供室1	南	0.434	2.97	0.64	0.930	0.595	0.767
6	子供室2	南	0.434	2.97	0.64	0.930	0.595	0.767
7	LD	東	0.512	2.15	0.64	0.930	0.595	0.653
8	台所	東	0.512	0.60	0.64	0.930	0.595	0.183
9	子供室東	東	0.512	0.35	0.64	0.930	0.595	0.105
10	トイレ	北	0.341	0.35	0.64	0.930	0.595	0.070
11	洗面所	北	0.341	0.35	0.64	0.930	0.595	0.070
12	ホール	北	0.341	0.35	0.64	0.930	0.595	0.070
13	ホール	北	0.341	0.84	0.64	0.930	0.595	0.170
14	トイレ	北	0.341	0.35	0.64	0.930	0.595	0.070
15	浴室	西	0.504	0.35	0.64	0.930	0.595	0.104
16	寝室	西	0.504	1.32	0.64	0.930	0.595	0.396
	·		窓∑A	21.99	9	さの日射動取得	(5.766

表 4.1-19 m_H・η_A (暖房期) の算出表


			ν	Α	U	$\eta \; (U \times 0.034)$	$\nu \times A \times \eta$	_	
	部位	方位	方位係数	面積 [m]	U:熱貫流率	日射熱取得率	日射熱取得量		
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]		
				壁長さ[m]	[W/(m•K)]				
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は CLT150+PF 140 等	屋根·上面	1.000	73.89	0.130	0.004	0.327		
外壁(開口部面積を除く)	CLT90+GW32K 155 又は	南	0.434	37.25	0.210	0.007	0.115		
	CLT90+XPS3種 120 又は	東	0.512	36.19	0.210	0.007	0.132		
	CLT90+PF 85 等	北	0.341	52.17	0.210	0.007	0.127		
		西	0.504	37.24	0.210	0.007	0.134		
開口部	ドア(玄関・キッチン)	西	0.504	3.51	1.90		0.114		
	窓 WW	-	-	21.99	庇軒考慮の計	†算結果より→	5.643	躯体+窓	
土間床等	土間床面積	-	0	67.90	-	-	-		6.59
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002		
		北	0.341	4.4	0.005	0.00017	0.0003		
	西	0.504	3.00	0.005	0.00017	0.0003			
		南	0.434	2.40	0.005	0.00017	0.0002		
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004		
		北	0.341	2.20	0.020	0.00068	0.0005		
		西	0.504	1.20	0.020	0.00068	0.0004		
		南	0.434	2.20	0.020	0.00068	0.0006		
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004		
		北	0.341	2.20	0.020	0.00068	0.0005		
		西	0.504	1.20	0.020	0.00068	0.0004		
		南	0.434	2.20	0.020	0.00068	0.0006		
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006		
		北	0.341	2.40	0.020	0.00068	0.0006		
		西	0.504	1.60	0.020	0.00068	0.0005		
		南	0.434	2.40	0.020	0.00068	0.0007		
木部熱橋 v)屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055		
	北	0.341	20.0	0.040	0.00136	0.0093			
				13.38	0.040	0.00136	0.0092	金物+木熱橋	
		南	0.434	10.52	0.040	0.00136	0.0062		0.04
			ΣΑ	330.14		m _c :	6.630	$= \Sigma(\nu \times A \times \eta)$	
					-	η _Α (暖房期):	2.01	$= \Sigma(\nu \times A \times \eta)/\Sigma$	E A × 100


表 4.1-20 窓の日射熱取得量(暖房期)の算出表

ILD 南				νΗ	Α	η	fH	$\eta c(\eta \times fH)$	ν H×A× η H
LD 南 0.936 2.97 0.64 0.51 0.326 0.907	窓No.	室名	方位	方位係数	面積	日射熱取得率	取得日射量補	日射熱取得率	日射熱取得量
LD 南 0.936 2.97 0.64 0.51 0.326 0.907					[㎡]	(補正前)	正係数	(補正後)	[W/K]
2 LD 南 0.936 2.15 0.64 0.51 0.326 0.655 3 和室 南 0.936 2.15 0.64 0.51 0.326 0.655 4 複室 南 0.936 1.82 0.64 0.51 0.326 0.907 6 子供室2 南 0.936 2.97 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.35 0.64 0.51 0.326 0.405 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.059 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 木ール 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西						[-]	[-]	[-]	
2 LD 南 0.936 2.15 0.64 0.51 0.326 0.655 3 和室 南 0.936 2.15 0.64 0.51 0.326 0.655 4 複室 南 0.936 1.82 0.64 0.51 0.326 0.907 6 子供室2 南 0.936 2.97 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.35 0.64 0.51 0.326 0.405 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.059 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 木ール 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西									
3 和室 南	1	LD	南	0.936	2.97	0.64	0.51	0.326	0.907
3 和室 南									
検察室 南	2	LD	南	0.936	2.15	0.64	0.51	0.326	0.655
5 子供室1 南 0.936 2.97 0.64 0.51 0.326 0.907 6 子供室2 南 0.936 2.97 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.60 0.64 0.51 0.326 0.113 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.051 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 16 察室 西	3	和室	南	0.936	2.15	0.64	0.51	0.326	0.655
6 子供室2 南 0.936 2.97 0.64 0.51 0.326 0.907 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.60 0.64 0.51 0.326 0.113 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.065 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 16 寮室 西 0.523 1.32 0.64 0.51 0.326 0.029	4	寝室	南	0.936	1.82	0.64	0.51	0.326	0.554
7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.60 0.64 0.51 0.326 0.013 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.065 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.029 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	5	子供室1	南	0.936	2.97	0.64	0.51	0.326	0.907
8 台所 東 0.579 0.60 0.64 0.51 0.326 0.113 9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.065 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.072 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.072 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.059 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	6	子供室2	南	0.936	2.97	0.64	0.51	0.326	0.907
9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.065 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.029 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	7	LD		0.579	2.15	0.64	0.51	0.326	0.405
9 子供室東 東 0.579 0.35 0.64 0.51 0.326 0.065 10 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 11 洗面所 北 0.261 0.35 0.64 0.51 0.326 0.029 12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.029 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.029 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	8	台所	東	0.579	0.60	0.64	0.51	0.326	0.113
11 洗面所 北	9	子供室東	東	0.579	0.35	0.64	0.51	0.326	0.065
12 ホール 北 0.261 0.35 0.64 0.51 0.326 0.029 13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.072 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.059 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	10	トイレ	北	0.261	0.35	0.64	0.51	0.326	0.029
13 ホール 北 0.261 0.84 0.64 0.51 0.326 0.072 14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.059 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	11	洗面所	北	0.261	0.35	0.64	0.51	0.326	0.029
14 トイレ 北 0.261 0.35 0.64 0.51 0.326 0.029 15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.059 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	12	ホール	北	0.261	0.35	0.64	0.51	0.326	0.029
15 浴室 西 0.523 0.35 0.64 0.51 0.326 0.059 16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	13	ホール	北	0.261	0.84	0.64	0.51	0.326	0.072
16 寝室 西 0.523 1.32 0.64 0.51 0.326 0.226	14	トイレ	北	0.261	0.35	0.64	0.51	0.326	0.029
	15	浴室	西	0.523	0.35	0.64	0.51	0.326	0.059
窓 Z A 21.99 家の日射勢取得量(運馬導): 5.643	16	寝室	西	0.523	1.32	0.64	0.51	0.326	0.226
窓 Z A 21.99 家の日射勢取得量(導序導): 5.643									
窓 Σ A 21.99 家の日射勢取得量(運馬導): 5.643									
窓 Σ A 21.99 家の日射勢取得量(導序導): 5.643									
窓 Σ A 21.99 家の日射勢取得量(運馬等): 5.643									
窓 Σ A 21.99 家の日射勢取得量(暖厚葉): 5.643									
窓 Σ A 21.99 家の日射勢取得量(暖厚葉): 5.643									
窓 Σ A 21.99 家の日射勢取得量(暖厚葉): 5.643									
窓 Σ A 21.99 窓の日射勢取得量(暖厚期): 5.643									
窓 Σ A 21.99 窓の日射勢取得量(暖厚 類): 5.643									
窓 Σ A 21.99 窓の日射勢取得量(暖厚 類): 5.643									
窓ΣA 21.99 窓の日射勢取得量(呼厚端): 5.643			1						
窓 Σ A 21.99 窓の日射熱取得量(響序期): 5.643									
		•	•	窓ΣΑ	21.99	3	窓の日射熱取得	量(暖房期):	5.643

【計算根拠 熱貫流率 (U値)】

基礎断熱の U値は、1・2地域の U値基準値を用い 0.37 とした。

②開口部断熱強化型

【計算結果】

表 4.1-21 開口部断熱強化型の外皮性能計算結果

住戸名称	地域区分	外皮性能計算結果					
		U _A	η Α(冷房期)	q		m _C	m _H
開口部強化タイプ		[W/(m²·K)]	[-]	[W/K]		[W/(W/m²)]	[W/(W/m³)]
基準モデル	1・2地域	0.34	2.1	112.2		6.86	6.73

基準値	0.34	-
基準適否	OK	OK

【計算根拠】

表 4.1-22 g・U_Aの算出表

			Α	L	U	Н	$A(L) \times U \times H$	
	部位	隣接空間	面積 [㎡]	長さ [m]	U:熱貫流率 [W/(㎡·K)] [W/(m·K)]	温度差係数 [-]	貫流熱損失 [W/K]	
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は CLT150+PF 140 等	外気	73.89	-	0.130	1.00	9.61	
外壁(開口部面積を除く)	CLT90+GW32K 115 又は CLT90+XPS3種 90 又は CLT90+PF 65 等	外気	162.84	-	0.260	1.00	42.34	
開口部	ドア(玄関・キッチン)	外気	3.51	-	1.60	1.00	5.62	
	窓 WW	外気	21.99	-	1.60	1.00	35.18	
土間床等	土間床面積	-	67.90	-	-	-	-	
	土間外周 XPS3種 100	外気	-	35.49	0.370	1.00	13.13	躯体+窓
	(玄関)	床下	-	0.000		0.70	0.00	105.88
v)屋根×壁接合部			(金物)	11.6	0.005	0.00	0.00	
iii)90幅_2階壁×2階床(1階層	屋根)		(金物)	6.8	0.020	1.00	0.14	
iii)90幅 1階壁×2階床(1階	iii)90幅 1階壁×2階床(1階屋根)		(金物)	6.8	0.020	1.00	0.14	
viii) 1階壁×基礎			(金物)	8.00	0.497	1.00	3.98	金物+木熱橋
v)屋根×壁接合部	_		木部	51.83	0.04	1.00	2.07	6.32
•	·	ΣΑ	330.14		•	q:	112.20	= Σ (A • U • H)
						U _A :	0.339848	= Σ (A•U•H) / ΣA

表 4.1-23 金物長さ

	方位	壁長さ	パネル数	金物数	金物長さ	金物長さ計
		[m]	(910幅/1P)	2個/1P	0.1m/1個	0.1m/1個
v)屋根×壁接合部	東	7.92	9	18	1.8	11.60
v)屋根×壁接合部	北	20.02	22	44	4.4	
v)屋根×壁接合部	西西	13.38	15	30	3.0	
v)屋根×壁接合部	南	10.52	12	24	2.4	
iii)2階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)2階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)2階壁×2階床(1階屋根)	西西	5.460	6	12	1.2	
iii)2階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)1階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	西西	5.460	6	12	1.2	
iii)1階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
viii)1階壁×基礎	東	7.280	8	16	1.6	8.00
viii)1階壁×基礎	北	10.465	12	24	2.4	
viii)1階壁×基礎	西西	7.280	8	16	1.6	
viii)1階壁×基礎	南	10.465	12	24	2.4	

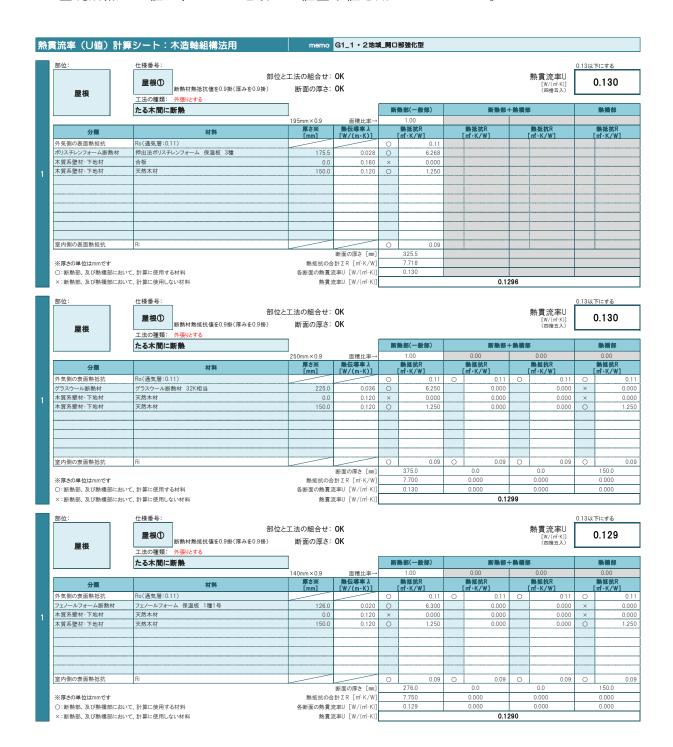
表 4.1-24 m_C・η_A(冷房期)の算出表

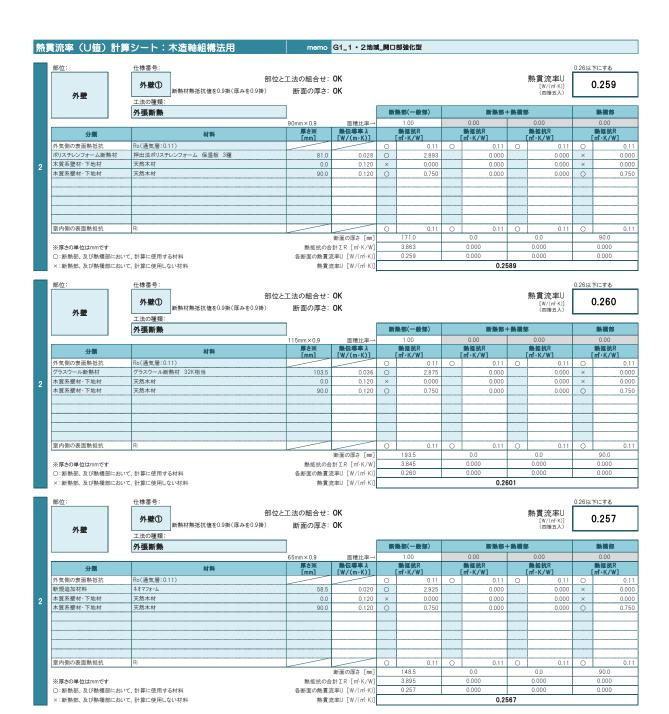
			ν	Α	U	η (U × 0.034)	$\nu \times A \times \eta$	
	部位	方位	方位係数	面積	U: 熱貫流率	日射熱取得率	日射熱取得量	
				[m]	[W/(m*K)]	[-]	[W/K]	
				金物長さ[m]	[W/(m·K)]			
				壁長さ[m]				
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は CLT150+PF 140 等	屋根·上面	1.000	73.89	0.130	0.004	0.327	
外壁(開口部面積を除く)	CLT90+GW32K 115 又は	南	0.434	37.25	0.260	0.009	0.143	
	CLT90+XPS3種 90 又は	東	0.512	36.19	0.260	0.009	0.164	
	CLT90+PF 65 等	北	0.341	52.17	0.260	0.009	0.157	
		西	0.504	37.24	0.260	0.009	0.166	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	1.60	0.054	0.096	
	窓 WW	-	-	21.99	庇軒考慮の言	†算結果より→	5.766	躯体+窓
土間床等	土間床面積	-	0	67.90	-	-	-	6.82
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003	
		西	0.504	3.00	0.005	0.00017	0.0003	
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006	
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020	0.00068	0.0007	
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055	
		北	0.341	20.0	0.040	0.00136		
		西	0.504	13.38	0.040	0.00136	0.0092	金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
			ΣΑ	330.14		m _c :	6.856	$= \Sigma(\nu \times A \times \eta)$
						η Α(冷房期):	2.08	$= \Sigma (\nu \times A \times \eta) / \Sigma A \times 100$

表 4.1-25 窓の日射熱取得量(冷房期)の算出表

			ν	Α	η	fc	$\eta c(\eta \times fc)$	ν×Α×ης
窓No.	設置壁	方位	方位係数	面積	日射熱取得率	取得日射量	日射熱取得率	日射熱取得量
75.110.		"	73 1—1/1/22	[m ²]	(補正前)	補正係数	(補正後)	[W/K]
				22	[-]	[-]	[-]	2
1	LD	南	0.434	2.97	0.64	0.930	0.595	0.767
2	LD	南	0.434	2.15	0.64	0.930	0.595	0.554
3	和室	南	0.434	2.15	0.64	0.930	0.595	0.554
4	寝室	南	0.434	1.82	0.64	0.930	0.595	0.468
5	子供室1	南	0.434	2.97	0.64	0.930	0.595	0.767
6	子供室2	南	0.434	2.97	0.64	0.930	0.595	0.767
7	LD	東	0.512	2.15	0.64	0.930	0.595	0.767
8	台所	東	0.512	0.60	0.64	0.930	0.595	0.183
9	子供室東	東	0.512	0.35	0.64	0.930	0.595	0.105
10	トイレ	北	0.341	0.35	0.64	0.930	0.595	0.070
11	洗面所	北	0.341	0.35	0.64	0.930	0.595	0.070
12	ホール	北	0.341	0.35	0.64	0.930	0.595	0.070
13	ホール	北	0.341	0.84	0.64	0.930	0.595	0.170
14	トイレ	北	0.341	0.35	0.64	0.930	0.595	0.070
15	浴室	西西	0.504	0.35	0.64	0.930	0.595	0.104
16	寝室	西西	0.504	1.32	0.64	0.930	0.595	0.396
			0.001	1.02	0.01	0.000	0.000	0.000
		1						
		1						
		1						
		1						
			窓ΣΑ	21.99	-	マクロ 計算的	量(冷房期):	5.766

表 4.1-26 m_H・η_A (暖房期) の算出表


			ν	Α	U	$\eta (U \times 0.034)$	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積	U: 熱貫流率	日射熱取得率	日射熱取得量	
				[m²]	[W/(m*K)]	[-]	[W/K]	
				金物長さ[m]	[W/(m·K)]			
				壁長さ[m]				
屋根(開口部面積を除く)	CLT150+GW32K 250 又は CLT150+XPS3種195 又は	屋根·上面	1.000	73.89	0.130	0.004	0.327	
	CLT150+PF 140 等							
外壁(開口部面積を除く)	CLT90+GW32K 115 又は	南	0.434	37.25	0.260	0.009	0.143	
	CLT90+XPS3種 90 又は	東	0.512	36.19	0.260	0.009	0.164	
	CLT90+PF 65 等	北	0.341	52.17	0.260			
		西	0.504	37.24	0.260		0.166	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	1.60		0.096	
	窓 WW	-	-	21.99		†算結果より→		躯体+窓
土間床等	土間床面積	-	0	67.90		-	-	6.70
屋根×壁接合部		東	0.512	1.80				
		北	0.341	4.4		0.00017	0.0003	
		西	0.504	3.00	0.005	0.00017	0.0003	
		南	0.434	2.40		0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068		
		南	0.434	2.20		0.00068		
1階壁×2階床(1階屋根)		東	0.512	1.20				
		北	0.341	2.20		0.00068		
		西	0.504	1.20				
		南	0.434	2.20		0.00068		
1階壁×基礎		東	0.512	1.60		0.00068		
		北	0.341	2.40		0.00068		
			0.504	1.60		0.00068	0.0005	
			0.434	2.40	0.020	0.00068		
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92				
		北	0.341	20.0				
		西	0.504	13.38				金物+木熱橋
		南	0.434	10.52	0.040			
			ΣΑ	330.14		m _c :		$= \Sigma(\nu \times A \times \eta)$
						η ▲(睡房期):	2.04	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$


表 4.1-27 窓の日射熱取得量(暖房期)の算出表

			ν H	Α	η	fH	$\eta c(\eta \times tH)$	$\nu H \times A \times \eta H$
窓No.	室名	方位	方位係数	面積	日射熱取得率	取得日射量補	日射熱取得率	日射熱取得量
				[m²]	(補正前)	正係数	(補正後)	[W/K]
					[-]	[-]	[-]	
1	LD	南	0.936	2.97	0.64	0.51	0.326	0.907
	l							
	LD	南	0.936	2.15		0.51	0.326	0.655
	和室	南	0.936	2.15		0.51	0.326	0.655
	寝室	南	0.936	1.82	0.64	0.51	0.326	0.554
	子供室1	南	0.936	2.97	0.64	0.51	0.326	0.907
	子供室2	南	0.936	2.97	0.64	0.51	0.326	0.907
	LD	東	0.579	2.15		0.51	0.326	0.405
	台所	東	0.579	0.60	0.64	0.51	0.326	0.113
	子供室東	東	0.579	0.35	0.64	0.51	0.326	0.065
	トイレ	北	0.261	0.35	0.64	0.51	0.326	0.029
	洗面所	北	0.261	0.35	0.64	0.51	0.326	0.029
	ホール	北	0.261	0.35	0.64	0.51	0.326	0.029
	ホール	北	0.261	0.84	0.64	0.51	0.326	0.072
	トイレ	北	0.261	0.35		0.51	0.326	0.029
	浴室	西	0.523	0.35	0.64	0.51	0.326	0.059
16	寝室	西	0.523	1.32	0.64	0.51	0.326	0.226
	•	•	窓ΣΑ	21.99	3	窓の日射熱取得	量(暖房期):	5.643

【計算根拠 熱貫流率 (U値)】

基礎断熱の U 値は、1・2地域の U 値基準値を用い 0.37 とした。

5) 6地域における断熱仕様

6 地域における躯体(屋根・壁)断熱強化型および開口部断熱強化型の断熱性能試算結果を以下に示す。

表 4.1-28 躯体(屋根·壁)断熱強化型 (6地域)

【計算結果】UA: 0.54

		屋根・壁の脚	断熱厚を増やす
 【基礎断熱仕様】			逆の断熱性能を設定し、
	→基準	JA他に適合す	る屋根、壁のU値を検討
	U値	想定CLT厚	断熱仕様例
窓	2.91	-	樹脂サッシ LowE複層(A5以上10未満) 日射取得型
			GW32K- <mark>155</mark> mm
屋根	0.19	CLT150mm	XPS3種− <mark>120</mark> mm
			PF-85mm
			GW32K- <mark>90</mark> mm
壁	0.32	CLT90mm	XPS3種− <mark>70</mark> mm
			PF- <mark>50</mark> mm
基礎断熱	0.37	-	XPS3種−100mm
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋
2階壁×2階床(iii)	Ψ0.020		金物熱橋
1階壁×2階床(1階屋根)(iii)	Ψ0.020	_	金物熱橋
1階壁×基礎(viii)	Ψ0.497		金物熱橋

※参考 η_A基準値: 2.8, 【計算結果】η_A: 2.7

表 4.1-29 開口部断熱強化型 (6地域)

【計算結果】Ux:0.55

【前异和未】UA.U.33									
		開口部の断熱	性能を上げる						
▼ ++ 7 ++ 1/ ++ ▼	・窓の断	熱性能と基礎	の断熱性能を設定し、						
【基礎断熱仕様】 	⇒基準U	値に適合する	る屋根、壁のU値を検討						
	U値	想定CLT厚	断熱仕様例						
窓	2.33	ı	樹脂サッシ LowE複層(A10以上) 日射取得型						
			GW32K-110mm						
屋根	0.24	CLT150mm	XPS3種− <mark>85</mark> mm						
			PF- <mark>65</mark> mm						
			GW32K- <mark>55</mark> mm						
壁	0.43	CLT90mm	XPS3種− <mark>45</mark> mm						
			PF- <mark>35</mark> mm						
基礎断熱	0.37	-	XPS3種−100mm						
屋根×壁接合部(v)	Ψ0.045		金物熱橋+木熱橋						
2階壁×2階床(iii)	Ψ0.020	_	金物熱橋						
1階壁×2階床(iii)	Ψ0.020		金物熱橋						
1階壁×基礎(viii)	Ψ0.497		金物熱橋						

※参考 η_A 基準値:2.8, 【計算結果】 η_A :2.8

6) 6地域における外皮性能計算結果と根拠

6 地域における躯体(屋根・壁)断熱強化型および開口部断熱強化型の外皮性能計算結果と計算根拠を以下に示す。

①躯体(屋根·壁)断熱強化型

【計算結果】

表 4.1-30 躯体(屋根・壁)断熱強化型の外皮性能計算結果

住戸名称	地域区分	外皮性能計算結果					
		U _A	η _A (冷房期)	q		m _C	m _H
躯体強化タイプ		[W/(m²·K)]	[-]	[W/K]		[W/(W/m³)]	[W/(W/m²)]
基準モデル	6地域	0.54	2.7	179.4		8.96	8.81

基準値	0.56	2.8
基準適否	OK	OK

【計算根拠】

表 4.1-31 q ・U_Aの算出表

			Α	L	U	Н	$A(L) \times U \times H$	
	部位	隣接空間	面積 [㎡]	長さ [m]	U:熱貫流率 [W/(㎡·K)] [W/(m·K)]	温度差係数 [-]	貫流熱損失 [W/K]	
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	外気	73.89	-	0.190	1.00	14.04	
外壁(開口部面積を除く)	CLT90+GW32K 55 又は CLT90+XPS3種 45 又は CLT90+PF 35 等	外気	162.84	-	0.320	1.00	52.11	
開口部	ドア(玄関・キッチン)	外気	3.51	-	2.91	1.00	10.21	
	窓 WW	外気	28.69	-	2.91	1.00	83.50	
土間床等	土間床面積	-	67.90	-	-	-	-	
	土間外周 XPS3種 100	外気	-	35.49	0.370	1.00	13.13	躯体+窓
	(玄関)	床下	-	0.000		0.70	0.00	172.99
v)屋根×壁接合部			(金物)	11.6	0.005	1.00	0.06	
iii)90幅_2階壁×2階床(1階)	量根)		(金物)	6.8	0.020	1.00	0.14	
iii)90幅 1階壁×2階床(1階	屋根)		(金物)	6.8	0.020	1.00	0.14	
viii) 1階壁×基礎			(金物)	8.00	0.497	1.00	3.98	金物+木熱橋
v)屋根×壁接合部			木部	51.83	0.04	1.00	2.07	6.38
•	·	ΣΑ	336.84		· · · · · · · · · · · · · · · · · · ·	q:	179.37	= Σ (A • U • H)
				•		II.·	0.533	= Σ (A·U·H) / Σ A

表 4.1-32 金物長さ

	方位	壁長さ	パネル数	金物数	金物長さ	金物長さ計
		[m]	(910幅/1P)	2個/1P	0.1m/1個	0.1m/1個
v)屋根×壁接合部	東	7.92	9	18	1.8	11.60
v)屋根×壁接合部	北	20.02	22	44	4.4	
v)屋根×壁接合部	西	13.38	15	30	3.0	
v)屋根×壁接合部	南	10.52	12	24	2.4	
iii)2階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)2階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)2階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)2階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)1階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)1階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
viii)1階壁×基礎	東	7.280	8	16	1.6	8.00
viii)1階壁×基礎	北	10.465	12	24	2.4	
viii)1階壁×基礎	西	7.280	8	16	1.6	
viii)1階壁×基礎	南	10.465	12	24	2.4	

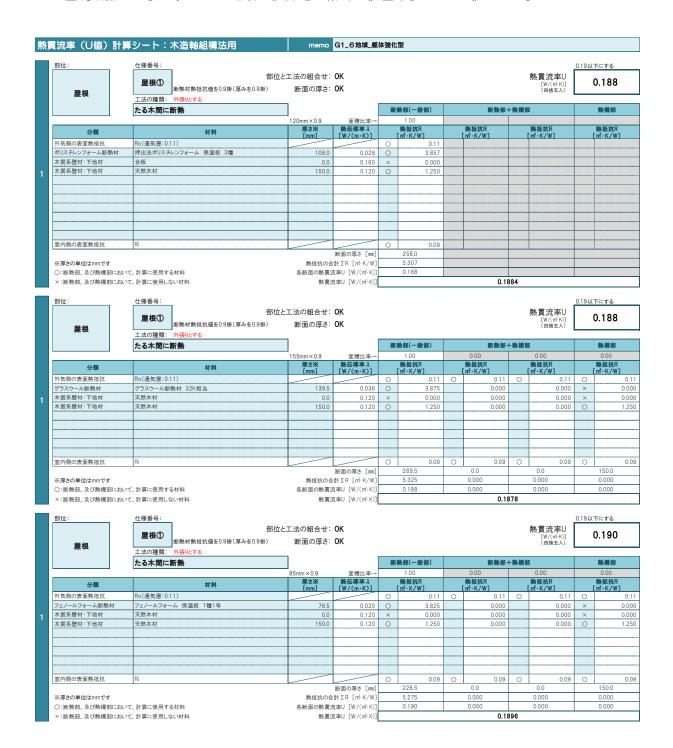
表 4.1-33 m_C・η_A (冷房期) の算出表

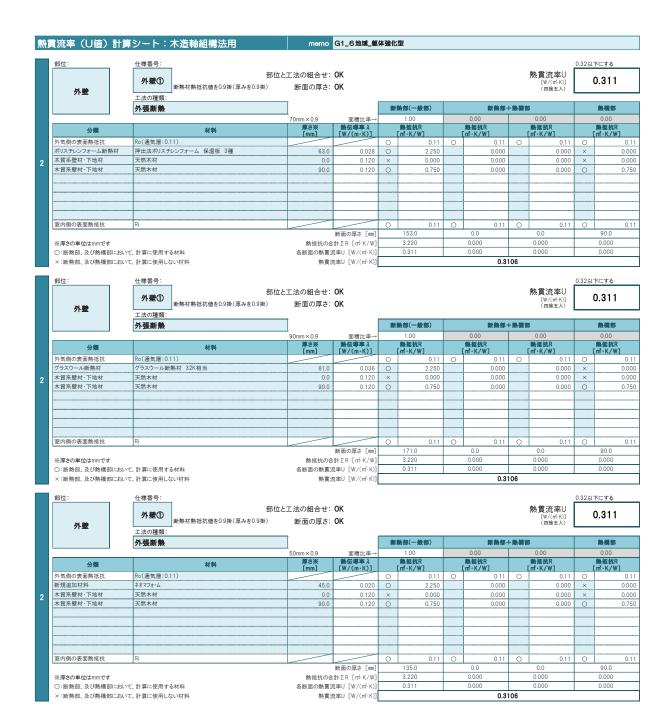
			ν	Α	U	η (U × 0.034)	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [m]	U:熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 155 又は CLT150+XPS3種 120 又は CLT150+PF 85 等	屋根·上面	1.000	73.89	0.190	0.006	0.477	
外壁(開口部面積を除く)	CLT90+GW32K 90 又は	南	0.434	37.25	0.320	0.011	0.176	
	CLT90+XPS3種 70 又は	東	0.512	36.19	0.320	0.011	0.201	
	CLT90+PF 50 等	北	0.341	52.17	0.320	0.011	0.193	
		西	0.504	37.24	0.320	0.011	0.204	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	2.91	0.099	0.175	
	窓 WW	-	-	28.69	庇軒考慮の言	†算結果より→	7.494	躯体+窓
土間床等	土間床面積	-	0	67.90	-	-	-	8.92
屋根×壁接合部		<u>東</u> 北	0.512	1.80	0.005	0.00017	0.0002	
			0.341	4.40	0.005	0.00017	0.0003	
			0.504	3.00	0.005	0.00017	0.0003	
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068		
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006	
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020	0.00068	0.0007	
木部熱橋 v) 屋根×壁	接合部	東北	0.512	7.92	0.040	0.00136	0.0055	
			0.341	20.02	0.040	0.00136	0.0093	
		西	0.504	13.38	0.040	0.00136	0.0092	金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
			ΣΑ	336.84		m _c :	8.958	$= \Sigma(\nu \times A \times \eta)$
						η Α(冷房期):	2.66	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$

表 4.1-34 窓の日射熱取得量(冷房期)の算出表

			ν	A	η	fc	η c(η × fc)	
窓No.	設置壁	方位	方位係数	面積	日射熱取得率	取得日射量	日射熱取得率	日射熱取得量
				[m²]	(補正前)	補正係数	(補正後)	[W/K]
					[-]	[-]	[-]	
1 L	_D	南	0.434	3.47	0.64	0.930	0.595	0.894
2 L	_D	南	0.434	3.47	0.64	0.930	0.595	0.894
3 1	和室	南	0.434	4.59	0.64	0.930	0.595	1.185
4 }		南	0.434	1.73	0.64	0.930	0.595	0.447
5 -	子供室1	南	0.434	3.22	0.64	0.930	0.595	0.830
6 -	子供室2	南	0.434	3.22	0.64	0.930	0.595	0.830
7 L	_D	東	0.512	2.15	0.64	0.930	0.595	0.653
8 1	台所	東	0.512	0.98	0.64	0.930	0.595	0.298
9 -	子供室東	東	0.512	0.66	0.64	0.930	0.595	0.201
10 H	トイレ	北	0.341	0.54	0.64	0.930	0.595	0.109
11 2	洗面所	北	0.341	0.54	0.64	0.930	0.595	0.109
12 7	ホール	北	0.341	0.54	0.64	0.930	0.595	0.109
13 7	ホール	北	0.341	0.99	0.64	0.930	0.595	0.201
14 H	トイレ	北	0.341	0.54	0.64	0.930	0.595	0.109
15	浴室	西	0.504	0.54	0.64	0.930	0.595	0.162
16	 寝室	西	0.504	0.99	0.64	0.930	0.595	0.297
17 /	クローゼット	西	0.504	0.54	0.64	0.930	0.595	0.162
			窓ΣΑ	28.69	9	8の日射動取得	量(冷房期):	7.494

表 4.1-35 m_H・η_A (暖房期) の算出表


			ν	Α	U	$\eta (U \times 0.034)$	$\nu \times A \times \eta$	
	部位	方位	方位係数	面積 [m]	U: 熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 155 又は CLT150+XPS3種 120 又は CLT150+PF 85 等	屋根·上面	1.000	73.89	0.190	0.006	0.477	
外壁(開口部面積を除く)	CLT90+GW32K 90 又は	南	0.434	37.25	0.320	0.011	0.176	
	CLT90+XPS3種 70 又は	東	0.512	36.19	0.320	0.011	0.201	
	CLT90+PF 50 等	北	0.341	52.17	0.320	0.011	0.193	
		西	0.504	37.24	0.320	0.011	0.204	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	2.91	0.099	0.175	
	窓 WW	-	-	28.69	庇軒考慮の計	†算結果より→	7.350	躯体+窓
土間床等	土間床面積	-	0	67.90	1	-	-	8.78
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003	
	壁×2階床(1階屋根)		0.504	3.00	0.005	0.00017	0.0003	
			0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006	
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020	0.00068	0.0007	
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055	
			0.341	20.0	0.040	0.00136	0.0093	
		西	0.504	13.38	0.040	0.00136	0.0092	金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
	·		ΣΑ	336.84		m _c :	8.814	$=\Sigma(\nu \times A \times \eta)$
						η _A (暖房期):	2.62	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$


表 4.1-36 窓の日射熱取得量(暖房期)の算出表

Y	1. 1 0.		1 21 200 47	(内里 (吸	(1)2 231)	光山 公			
LD 南 0.936 3.47 0.64 0.51 0.326 1.058 2 LD 南 0.936 3.47 0.64 0.51 0.326 1.058 3 和室 南 0.936 4.59 0.64 0.51 0.326 1.402 4 寝室 南 0.936 3.22 0.64 0.51 0.326 0.529 5 子供室1 南 0.936 3.22 0.64 0.51 0.326 0.983 6 子供室2 南 0.936 3.22 0.64 0.51 0.326 0.983 7 LD 東 0.579 0.15 0.64 0.51 0.326 0.983 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 16 寝室 西 0.523 0.54 0.64 0.51 0.326 0.046 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.59 0.64 0.51 0.326 0.092 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092 18 日本 日本 日本 日本 日本 日本 日本 日									
LD 南 0.936 3.47 0.64 0.51 0.326 1.058	窓No.	室名	方位	方位係数					日射熱取得量
1 LD 南 0.936 3.47 0.64 0.51 0.326 1.058 2 LD 南 0.936 3.47 0.64 0.51 0.326 1.058 3 和室 南 0.936 4.59 0.64 0.51 0.326 1.402 4 寝室 南 0.936 1.73 0.64 0.51 0.326 0.529 5 子供室1 南 0.936 3.22 0.64 0.51 0.326 0.983 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.983 7 LD 東 0.579 0.98 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.405 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092					[m²]	(補正前)	正係数	(補正後)	[W/K]
2 LD 南 0.936 3.47 0.64 0.51 0.326 1.058 3 和室 南 0.936 4.59 0.64 0.51 0.326 1.402 4 寝室 南 0.936 1.73 0.64 0.51 0.326 0.529 5 子供室1 南 0.936 3.22 0.64 0.51 0.326 0.983 6 子供室2 南 0.936 3.22 0.64 0.51 0.326 0.983 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.125 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 木一ル 北 0.261 0.54 0.64 0.51 0.326 0.046 13 木一ル 北						[-]	[-]	[-]	
新空 南	1	LD	南	0.936	3.47	0.64	0.51	0.326	1.058
検察室 南	2	LD	南	0.936	3.47	0.64	0.51	0.326	1.058
5 子供室1 南 0.936 3.22 0.64 0.51 0.326 0.983 6 子供室2 南 0.936 3.22 0.64 0.51 0.326 0.983 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 16 寝室 西	3	和室	南	0.936	4.59	0.64	0.51	0.326	1.402
6 子供室2 南 0.936 3.22 0.64 0.51 0.326 0.983 7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.092 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092	4	寝室	南	0.936	1.73	0.64	0.51	0.326	0.529
7 LD 東 0.579 2.15 0.64 0.51 0.326 0.405 8 台所 東 0.579 0.98 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.046 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.046 0.04 0.51<	5	子供室1	南	0.936	3.22	0.64	0.51	0.326	0.983
8 台所 東 0.579 0.98 0.64 0.51 0.326 0.185 9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.084 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.99 0.64 0.51 0.326 0.092 17 クローゼット 西 0.523 0.94 0.64 0.51 0.326 0.092 17 クローゼット </td <td>6</td> <td>子供室2</td> <td>南</td> <td>0.936</td> <td>3.22</td> <td>0.64</td> <td>0.51</td> <td>0.326</td> <td>0.983</td>	6	子供室2	南	0.936	3.22	0.64	0.51	0.326	0.983
9 子供室東 東 0.579 0.66 0.64 0.51 0.326 0.125 10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.084 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.092 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092	7	LD	東	0.579	2.15	0.64	0.51	0.326	0.405
10 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 11 洗面所 北 0.261 0.54 0.64 0.51 0.326 0.046 12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.084 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.092 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092			東	0.579	0.98	0.64	0.51	0.326	0.185
11 洗面所 北	9	子供室東	東	0.579	0.66	0.64	0.51	0.326	0.125
12 ホール 北 0.261 0.54 0.64 0.51 0.326 0.046 13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.084 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092 18 日本 日本 日本 日本 日本 日本 日本 日				0.261	0.54	0.64	0.51	0.326	0.046
13 ホール 北 0.261 0.99 0.64 0.51 0.326 0.084 14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092 18 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 19 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 10 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 11 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 12 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 13 マー・ディン・ 西 0.523 0.54 0.64 0.51 0.326 0.092 14 マー・ディン・ 日本・ディン・ 日本・デ	11	洗面所		0.261	0.54	0.64	0.51	0.326	0.046
14 トイレ 北 0.261 0.54 0.64 0.51 0.326 0.046 15 浴室 西 0.523 0.54 0.64 0.51 0.326 0.092 16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092				0.261	0.54	0.64	0.51	0.326	0.046
15 浴室 西 0.523				0.261	0.99				0.084
16 寝室 西 0.523 0.99 0.64 0.51 0.326 0.169 17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092				0.261	0.54	0.64	0.51	0.326	0.046
17 クローゼット 西 0.523 0.54 0.64 0.51 0.326 0.092				0.523	0.54	0.64	0.51	0.326	0.092
	16	寝室	西	0.523	0.99	0.64	0.51	0.326	0.169
窓 Σ A 28.69 窓の日射熱取得量(吸房期): 7.350	17	クローゼット	西	0.523	0.54	0.64	0.51	0.326	0.092
窓 Σ A 28.69 窓の日射熱取得量(吸房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(吸房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(優房期): 7.350									
窓 ΣA 28.69 窓の日射熱取得量(優房期): 7.350									
窓 ΣA 28.69 窓の日射熱取得量(優房期): 7.350									
窓 ΣA 28.69 窓の日射熱取得量(優房期): 7.350									
窓 ΣA 28.69 窓の日射熱取得量(優房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(優房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(暖房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(暖房期): 7.350									
窓 Σ A 28.69 窓の日射熱取得量(暖房期): 7.350									
				窓ΣΑ	28.69	- 1	窓の日射熱取得	量(暖房期):	7.350

【計算根拠 熱貫流率 (U値)】

*基礎断熱のU値は、1・2地域の設計施工指針U値基準値0.37の値とした。

②開口部断熱強化型

【計算結果】

表 4.1-37 開口部断熱強化型の外皮性能計算結果

基準適否

住戸名称	地域区分	外皮性能計算結果									
		U _A	η _A (冷房期)	q [w/w]		m _C	m _H				
開口部強化タイプ		[W/(m³·K)]	[-]	[W/K]		[W/(W/m³)]	[W/(W/m³)]				
基準モデル	6地域	0.55	2.8	182.3		9.32	9.17				
	基準値	0.56	2.8								

ОК

OK

【計算根拠】

表 4.1-38 q ・U_Aの算出表

			Α	L	U	Н	$A(L) \times U \times H$	
	部位	隣接空間	面積 [㎡]	長さ [m]	U:熱貫流率 [W/(㎡·K)] [W/(m·K)]	温度差係数 [-]	貫流熱損失 [W/K]	
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	外気	73.89	-	0.240	1.00	17.73	
外壁(開口部面積を除く)	CLT90+GW32K 55 又は CLT90+XPS3種 45 又は CLT90+PF 35 等	外気	162.84	-	0.430	1.00	70.02	
開口部	ドア(玄関・キッチン)	外気	3.51	-	2.33	1.00	8.18	
	窓 WW	外気	28.69	-	2.33	1.00	66.85	
土間床等	土間床面積	-	67.90	-	-	-	-	
	土間外周 XPS3種 100	外気	-	35.49	0.370	1.00	13.13	躯体+窓
	(玄関)	床下	-	0.000		0.70	0.00	175.92
v)屋根×壁接合部			(金物)	11.6	0.005	1.00	0.06	
iii)90幅_2階壁×2階床(1階月	量根)		(金物)	6.8	0.020	1.00	0.14	
iii)90幅 1階壁×2階床(1階	屋根)		(金物)	6.8	0.020	1.00	0.14	
viii) 1階壁×基礎			(金物)	8.00	0.497	1.00	3.98	金物+木熱橋
v)屋根×壁接合部			木部	51.83	0.04	1.00	2.07	6.38
		ΣΑ	336.84			q:	182.30	= Σ (A • U • H)
				•		U _A :	0.541	= Σ (A•U•H) / ΣA

表 4.1-39 金物長さ

	方位	壁長さ	パネル数	金物数	金物長さ	金物長さ計
		[m]	(910幅/1P)	2個/1P	0.1m/1個	0.1m/1個
v)屋根×壁接合部	東	7.92	9	18	1.8	11.60
v)屋根×壁接合部	北	20.02	22	44	4.4	
v)屋根×壁接合部	西	13.38	15	30	3.0	
v)屋根×壁接合部	南	10.52	12	24	2.4	
iii)2階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)2階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)2階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)2階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	東	5.460	6	12	1.2	6.80
iii)1階壁×2階床(1階屋根)	北	9.555	11	22	2.2	
iii)1階壁×2階床(1階屋根)	西	5.460	6	12	1.2	
iii)1階壁×2階床(1階屋根)	南	9.555	11	22	2.2	
viii)1階壁×基礎	東	7.280	8	16	1.6	8.00
viii)1階壁×基礎	北	10.465	12	24	2.4	
viii)1階壁×基礎	西	7.280	8	16	1.6	
viii)1階壁×基礎	南	10.465	12	24	2.4	

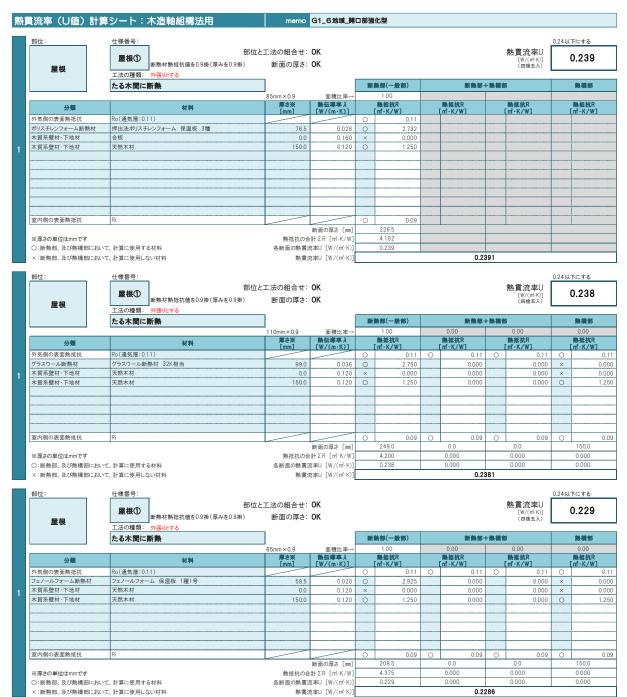
表 4.1-40 m_C・η_A (冷房期) の算出表

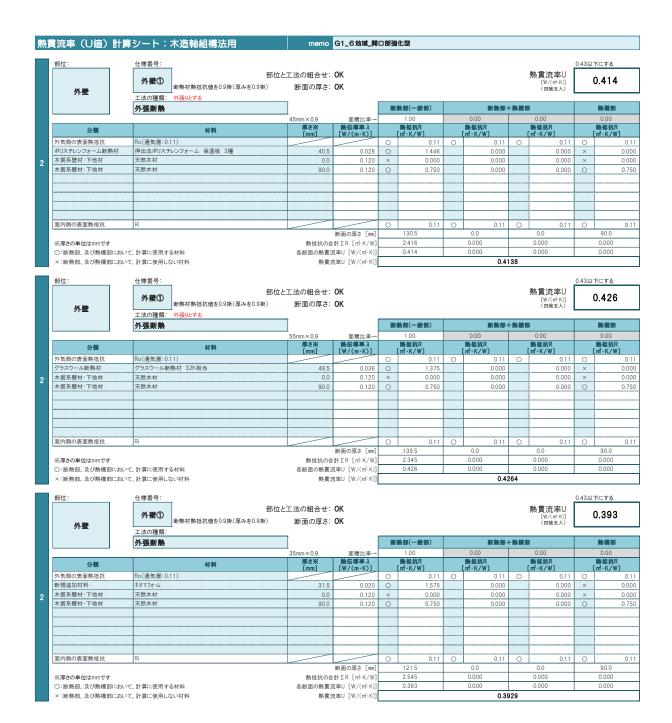
			ν	Α	U	$\eta \; (U \times 0.034)$	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [m]	U:熱貫流率	日射熱取得率	日射熱取得量	
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	屋根·上面	1.000	73.89	0.240	0.008	0.603	
外壁(開口部面積を除く)	CLT90+GW32K 55 又は	南	0.434	37.25	0.430	0.015	0.236	1
	CLT90+XPS3種 45 又は	東	0.512	36.19	0.430	0.015	0.271	1
	CLT90+PF 35 等	北	0.341	52.17	0.430	0.015	0.260	
		西	0.504	37.24	0.430	0.015	0.275	İ
開口部	ドア(玄関・キッチン)	西	0.504	3.51	2.33	0.079	0.140]
	窓 WW	=	-	28.69	庇軒考慮の言	†算結果より→	7.494	躯体+窓
土間床等	土間床面積	=	0	67.90	П	=	=	9.28
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003]
		西	0.504	3.00	0.005	0.00017	0.0003]
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068		
		北	0.341	2.20	0.020	0.00068	0.0005	
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006	
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020			
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055	
	(4) 7 建水产生球口的	北	0.341	20.0	0.040			-
		西	0.504	13.38	0.040	0.00136		金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
			ΣΑ	336.84		m _c :		$= \Sigma(\nu \times A \times \eta)$
						η Α(冷房期):	2.76542	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$

表 4.1-41 窓の日射熱取得量(冷房期)の算出表

			ν	Α	η	fc	$\eta c(\eta \times fc)$	ν×Α×ης
窓No.	設置壁	方位	方位係数	面積	日射熱取得率	取得日射量	日射熱取得率	日射熱取得量
				[m²]	(補正前)	補正係数	(補正後)	[W/K]
					[-]	[-]	[-]	
	_							
1	LD	南	0.434	3.47	0.64	0.930	0.595	0.894
2	LD	南	0.434	3.47	0.64	0.930	0.595	0.894
3	和室	南	0.434	4.59	0.64	0.930	0.595	1.185
4	寝室	南	0.434	1.73	0.64	0.930	0.595	0.447
5	子供室1	南	0.434	3.22	0.64	0.930	0.595	0.830
6	子供室2	南	0.434	3.22	0.64	0.930	0.595	0.830
7	LD	東	0.512	2.15	0.64	0.930	0.595	0.653
8	台所	東	0.512	0.98	0.64	0.930	0.595	0.298
9	子供室東	東	0.512	0.66	0.64	0.930	0.595	0.201
10	トイレ	北	0.341	0.54	0.64	0.930	0.595	0.109
11	洗面所	北	0.341	0.54	0.64	0.930	0.595	0.109
12	ホール	北	0.341	0.54	0.64	0.930	0.595	0.109
13	ホール	北	0.341	0.99	0.64	0.930	0.595	0.201
14	トイレ	北	0.341	0.54	0.64	0.930	0.595	0.109
15	浴室	西	0.504	0.54	0.64	0.930	0.595	0.162
16	寝室	西	0.504	0.99	0.64	0.930	0.595	0.297
17	クローゼット	西	0.504	0.54	0.64	0.930	0.595	0.162
	_							
								_
			窓∑A	28.69	3	8の日射熱取得	量(冷房期):	7.494

表 4.1-42 m_H・η_A(暖房期)の算出表


			ν	Α	U	$\eta (U \times 0.034)$	$\nu \times A \times \eta$	_
	部位	方位	方位係数	面積 [m]	U:熱貫流率	日射熱取得率	日射熱取得量	İ
				金物長さ[m]	[W/(m*K)]	[-]	[W/K]	
				壁長さ[m]	[W/(m·K)]			
屋根(開口部面積を除く)	CLT150+GW32K 110 又は CLT150+XPS3種 85 又は CLT150+PF 65 等	屋根·上面	1.000	73.89	0.240	0.008	0.603	
外壁(開口部面積を除く)	CLT90+GW32K 55 又は	南	0.434	37.25	0.430	0.015	0.236	
	CLT90+XPS3種 45 又は	東	0.512	36.19	0.430	0.015	0.271	
	CLT90+PF 35 等	北	0.341	52.17	0.430	0.015	0.260	
		西	0.504	37.24	0.430	0.015	0.275	
開口部	ドア(玄関・キッチン)	西	0.504	3.51	2.33	0.079	0.140	
	窓 WW	-	-	28.69	庇軒考慮の計	†算結果より→	7.350	躯体+窓
土間床等	土間床面積	-	0	67.90	Ī	-	-	9.13
屋根×壁接合部		東	0.512	1.80	0.005	0.00017	0.0002	
		北	0.341	4.4	0.005	0.00017	0.0003]
			0.504	3.00	0.005	0.00017	0.0003]
		南	0.434	2.40	0.005	0.00017	0.0002	
2階壁×2階床(1階屋根)	±×2階床(1階屋根)		0.512	1.20	0.020	0.00068	0.0004	
		北	0.341	2.20	0.020	0.00068	0.0005]
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×2階床(1階屋根)		東	0.512	1.20	0.020	0.00068	0.0004]
		北	0.341	2.20	0.020	0.00068	0.0005]
		西	0.504	1.20	0.020	0.00068	0.0004	
		南	0.434	2.20	0.020	0.00068	0.0006	
1階壁×基礎		東	0.512	1.60	0.020	0.00068	0.0006]
		北	0.341	2.40	0.020	0.00068	0.0006	
		西	0.504	1.60	0.020	0.00068	0.0005	
		南	0.434	2.40	0.020	0.00068	0.0007	1
木部熱橋 v) 屋根×壁	接合部	東	0.512	7.92	0.040	0.00136	0.0055]
			0.341	20.0	0.040	0.00136	0.0093]
		西	0.504	13.38	0.040	0.00136	0.0092	金物+木熱橋
		南	0.434	10.52	0.040	0.00136	0.0062	0.04
		•	ΣΑ	336.84		m _C :	9.171	$= \Sigma(\nu \times A \times \eta)$
						η _Α (暖房期):	2.72	$= \Sigma(\nu \times A \times \eta) / \Sigma A \times 100$


表 4.1-43 窓の日射熱取得量(暖房期)の算出表

			u H	Α	η	fH	$\eta c(\eta \times fH)$	$\nu H \times A \times \eta H$
窓No.	室名	方位	方位係数	面積	日射熱取得率	取得日射量補	日射熱取得率	日射熱取得量
				[m²]	(補正前)	正係数	(補正後)	[W/K]
					[-]	[-]	[-]	
1	LD	南	0.936	3.47	0.64	0.51	0.326	1.058
2	LD	南	0.936	3.47	0.64	0.51	0.326	1.058
3	和室	南	0.936	4.59	0.64	0.51	0.326	1.402
4	·寝室	南	0.936	1.73	0.64	0.51	0.326	0.529
5	子供室1	南	0.936	3.22	0.64	0.51	0.326	0.983
6	子供室2	南	0.936	3.22	0.64	0.51	0.326	0.983
7	LD	東	0.579	2.15	0.64	0.51	0.326	0.405
8	台所	東	0.579	0.98	0.64	0.51	0.326	0.185
9	子供室東	東	0.579	0.66	0.64	0.51	0.326	0.125
10	トイレ	北	0.261	0.54	0.64	0.51	0.326	0.046
11	洗面所	北	0.261	0.54	0.64	0.51	0.326	0.046
12	ホール	北	0.261	0.54	0.64	0.51	0.326	0.046
13	ホール	北	0.261	0.99	0.64	0.51	0.326	0.084
14	トイレ	北	0.261	0.54	0.64	0.51	0.326	0.046
15	浴室	西	0.523	0.54	0.64	0.51	0.326	0.092
16	寝室	西	0.523	0.99	0.64	0.51	0.326	0.169
17	クローゼット	西	0.523	0.54	0.64	0.51	0.326	0.092
			窓ΣΑ	28.69		窓の日射熱取得	量(暖房期):	7.350

【計算根拠 熱貫流率 (U値)】

*基礎断熱のU値は、1・2地域の設計施工指針U値基準値0.37の値とした。

4.1.3 非住宅における H25 省エネ基準に適合する CLT 建築物の外皮性能の検討

1) 非住宅の H25 省エネ基準適合の判断基準について

①評価対象

下記をいずれも満たすこと。

・ 外皮性能の基準

※「建築物省エネ法」では、誘導基準(性能向上計画認定)でのみ評価対象になる。

・一次エネルギー消費量に関する基準

(空調調和設備、機械換気設備、照明設備、給湯設備、昇降機、太陽光発電等設備)

②評価方法

下記いずれかを満たすこと。

- ・通常の計算法(全室の床面積や設備機器の仕様を用いて負荷を計算する。いわゆる詳細計算)。
- ・モデル建物法での評価 (建物全体モデル化して主たる設備機器等の仕様で適合可否の み判断)。
 - ⇒非住宅 2000 ㎡以下の省エネ基準届出の 9 割以上がモデル建物法で評価されている。 ⇒モデル建物法のほうが、①の方法より「安全側」で評価される。
 - ※今回検討はモデル建物法での評価を実施する。
- ③モデル建物法での評価方法

専用の計算プログラムを用いて計算する。

• 外皮性能

屋根、壁、床の断熱材の種類と厚さまたは、部位ごとのU値を入力

- ⇒「BPIm」値を算出
- ※ 接合部で想定される熱橋の熱損失を別途入力する必要なし
- ・一次エネルギー消費量

空調、換気、照明、給湯、昇降機設備省エネルギー効率等を入力。

⇒「BEIm」値を算出

2) 検討条件

検討に用いた建築物

協同組合オホーツクウッドピア CLT セミナーハウス

- 〈2 階建_延床面積:143.2 m² (1F:70.4 m²、2F:72.8 m²)〉
 - ・実際の建物は会議室が大部分だが事務所用途の建物として検証した。
 - ・温暖地に建っていることを想定し開口部の比率を変更して検証した。
 - ・屋根 CLT: 210mm、壁 CLT: 150mm、基礎断熱仕様

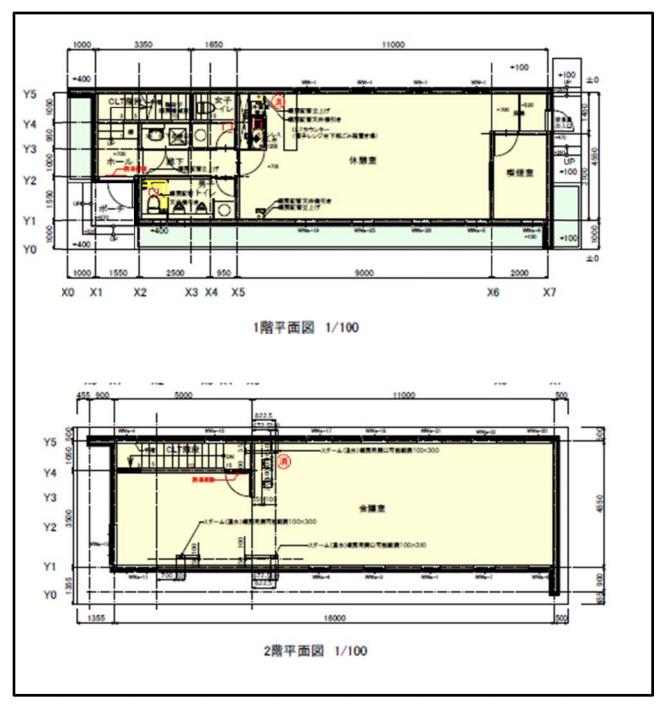


図 4.1-8 非住宅検討物件 平面図

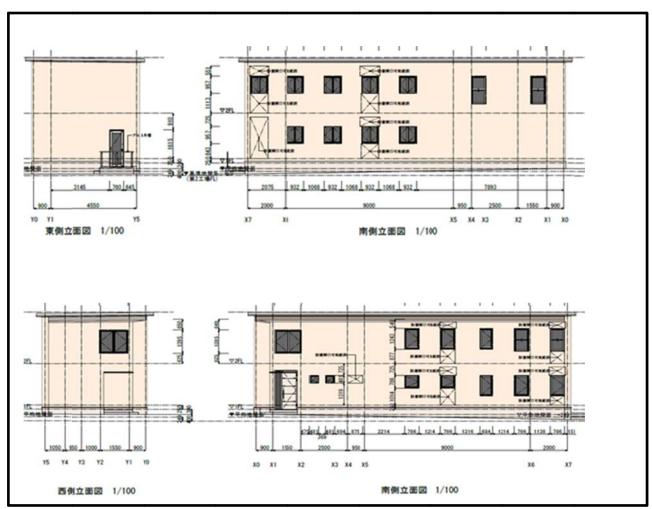


図 4.1-9 非住宅検討物件 立面図

■実物件

•開口部面積: 28.78 ㎡

· 窓比率: 7.7% (対総外皮)

: 12% (対壁)

⇒検証用に変更後

• 開口部面積: 51.34 m²

• 窓比率: 13.0% (対総外皮)

: 21% (対壁)

(図面は実物件)

3) H25省エネ基準適合仕様の検討結果

一般的な設備仕様のときに一次エネルギー消費量基準に適合できる断熱仕様の設定を目的に検討を行った。

①外皮性能基準

BPIm≦1.0 で省エネ基準適合

■ 2地域と6地域での適合判断を行った。

今回のCLT 建築物では、屋根と壁の断熱材を設置しない仕様でも外皮性能基準に 適 合 した。→CASE5

尚、RC屋根、RC壁の場合は無断熱では基準に適合していない。→CASE6)

結果

無断熱でも外皮性能基準に適合するが、接合金物部の結露対策は考慮されていない。 実際の物件では結露対策に必要な断熱材の設置が必要。

②一次エネルギー消費量基準

BEIm < 1.0 で省エネ基準適合

- 空調、換気、照明、給湯において設備の省エネ効率を「指定しない」として計算を行った。
- ・ 空調設備:パッケージ型エアコンディショナ(電気式);熱源平均 COP「指定しない」。 換気設備(便所):第二種または第三種換気。電動機出力「指定しない」。
- ・ 照明設備:床面積あたりの消費電力「指定しない」。タイムスケジュール制御「有」
- ・ 給湯設備:「指定しない」。

結果、全ての CASE で省エネ基準に適合しなかった。→CASE1~CASE12

屋根にネオマフォーム 300mm の高断熱プランでも検証したが(CASE9、CASE10)、 設備を上記の「指定しない」では適合しない結果となっている。

- 空調設備の COP、照明設備の床 1 m³あたりの消費電力を入力し算定
- ・ 空調:パッケージ型エアコンディショナ(電気式);冷房平均 COP: 2.93、暖房平均 COP: 3.77 相当
- 照明:基準一次エネルギー量の設定に用いられている 16.3W/㎡を入力 結果、適合となった→ CASE13.
- ・ 尚、RC 屋根壁無断熱(CASE6)も上記設備仕様で一次エネルギー消費量基準に適合する。

結果

空調、給湯等の省エネ設備の導入で外皮性能に関わらず基準に適合する。

・ ※一次エネルギー消費量の適合可否は、設備仕様の省エネ性能の影響が大きい。

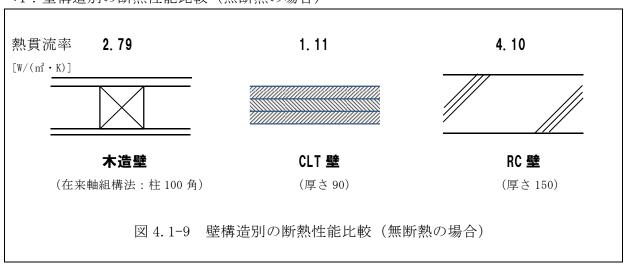
表 4.1-44 H25 省エネ基準適合仕様の検討結果

			部位									外皮性能	基準	一次エネルギー	-消費量基準	
CASE	構造	屋	根	B	ŧ	基礎		窓		設備	地域					No.
ONOL	旧足	断熱材の厚さ (XPS3種想定)	熱貫流率 [W/(㎡·K)]	断熱材の厚さ (XPS3種想定)	熱貫流率 [W/(m・K)]	断熱材の厚さ (XPS3種想定)	ガラスの仕様	熱貫流率 [W/(㎡·K)]	日射熱取得率 [無次元]	DX WH	10%	BPIm	判定	BEIm	判定	110.
CASE1	CLT	50	0.29	30	0.42	30	Low-E複層(A6) (日射取得型)	2.55	0.564	指定しない	6	0.74	0	1.09	X	1
											2	0.71	0	1.29	Х	2
CASE2	CLT	70	0.24	50	0.33	30	Low-E複層(A6) (日射取得型)	2.55	0.564	指定しない	6	0.73	0	1.09	X	3
							Low-E複層(A6)				6	0.73	0	1.09	Х	5
CASE3	CLT	100	0.20	50	0.33	30	(日射取得型)	2.55	0.564	指定しない	2	0.69	0	1.28	Х	6
04054	0.7	000	0.10	100	0.00	20	Low-E複層(A6)	٥٢٢	0.504	#\d\ +\\\	6	0.73	0	1.08	х	7
CASE4	CLT	200	0.12	100	0.22	30	(日射取得型)	2.55	0.564	指定しない	2	0.68	0	1.28	х	8
CASE5	CLT	0	0.52	0	0.68	30	Low-E複層(A6)	2.55	0.564	指定しない	6	0.75	0	1.09	Х	9
6/1020	OLI	V	0.02	V	0.00	00	(日射取得型)	2.00	0.004	IHCO.94	2	0.75	0	1.30	Х	10
CASE6	RC	0	3.10	0	3.19	30	Low-E複層(A6)	2.55	0.564	指定しない	6	1.06	Х	1.17	Х	11
	1.0	Ů	0.10	Ů	0.10		(日射取得型)	2.00	0.001	112000	2	1.43	Х	1.55	Х	12
CASE7	CLT	50	0.29	30	0.42	30	Low-E複層(A6) (日射遮蔽型)	2.5	0.415	指定しない	6	0.72	0	1.09	Х	13
							(口州延献王)				2	0.71	0	1.29	Х	14
CASE8	CLT	50	0.29	30	0.42	30	Low-E複層(A12) (日射取得型)	1.77	0.562	指定しない	6	0.73	0	1.08	Х	15
		300		200			(HAJANI) II				2	0.68	0	1.28	Х	16
CASE9	CLT	(フェノール	0.07	(フェノール	0.17	100	LowE複層(アルゴン12) (日射取得型)	1.47	0.561	指定しない	6	0.72	0	1.07	X	17
		7ォーム) 300		7ォーム) 200			- 「佐屋/マルーシ 40)				6	0.71	0	1.08	Х	19
CASE10	CLT	フォーム) フェノール	0.07	フォーム) フェノール	0.17	100	LowE複層(アルゴン12) (日射遮蔽型)	1.37	0.404	指定しない	2	0.64	0	1.27	х	20
										lle-de-1	6	0.78	0	1.09	х	21
CASE11	CLT	50	0.29	30	0.42	30	単層_熱反シルバー	5.85	0.698	指定しない	2	0.83	0	1.31	х	22
CASE12	CLT	50	0.29	30	0.42	30	単層 透明	5,95	0.876	指定しない	6	0.79	0	1.09	Х	23
UMUE 12	ULI	ΰŰ	0.29	ა0	U.4Z	ა0	平宿_迈明	0.90	0.670		2	0.83	0	1.31	х	24
CASE13 (外皮は	CLT	50	0.29	30	0.42	30	Low-E複層(A6) (日射取得型)	2.55	0.564	照明・ 空調のみ	6	0.74	0	0.90	0	25
CASE1と同)							Com 155 (Q) [A] 777			指定	2	0.71	0	0.97	0	26
CASE14 (外皮は CASE6と同 じ)	RC	0	3.10	0	3.19	30	Low-E複層(A6) (日射取得型)	2.55	0.564	照明・ 空調のみ 指定	6	1.06	х	0.93	0	27

4.1.4 表面結露対策の検討

1) 検討主旨

建築物の各部位の断熱性能を設計するうえで検討すべき視点は2つある。


一つは、「熱損失の削減」であり、もう一つは「結露対策」である。さらに「結露対策」に は、「表面結露対策」と「内部結露対策」がある。ここでは、「表面結露対策」について検 討した。

CLT 建築において外壁などの外気に接する部位に CLT を用いた場合は、CLT の断熱性能が高い*1 ため、温暖地の非住宅用途の建築物においては断熱化を必ずしも要さないケースもあり得る*2。つまり、現行の省エネ基準相当の断熱水準レベルであれば熱損失量を基準値より少なくすることは、地域や用途によっては断熱材を施工することなく CLT 単体でも性能担保することが、可能である。

地域、用途によっては、無断熱でも可となるケースが考えられるため、無断熱の場合であっても躯体各所において表面結露発生の危険性について検証する必要がある。CLT 自体は断熱性能が高いため、日本国内であれば無断熱でも表面結露の危険性はほとんどないと考えられる。しかし、CLT 建築を構成するためには、CLT 版同士や CLT 版と基礎との緊結が必要である。そして、その緊結には現在金物を用いる方法が考えられており、その金物部分が室内外間で熱橋となっている箇所は、表面結露発生の危険性が高いため、検証する必要がある。

具体的には、CLT 版と CLT 版の緊結部、及び CLT 版と基礎との取合い部などが検証箇所と考えられる。また、金物熱橋部ではないが、出隅部の室内側も二次元熱流が発生して隅角部が一般部よりも低温化するため、この部分についても表面結露発生の危険性について検証する。

*1:壁構造別の断熱性能比較 (無断熱の場合)

*2:4-4 H25 基準に適合する CLT 建築物(非住宅)の外皮性能検討 参照

2) CLT 版+CLT 版の取合い部金物廻りの温度

CLT 版と CLT 版の取合い部で金物熱橋の発生する箇所は、概ね図 4.1-10 に示す T型、+型、L型 2 種類の 4 種類がある。これら各々について、室内側表面の最低温度が最も低い取合い部が表面結露発生の危険性が最も高いため、その取合い部での検討結果を全取合い部に適用することとする。

室内側表面温度の算出は、定常二次元伝熱計算(INSYS)により求めた。計算条件は、 以下に示す通りとし、各取合い部とも共通とする。

- ・CLT 厚さ:壁90mm、床・屋根・外気に接する床150mm
- ·外気 -10℃、室内 15℃
- ・金物形状: 断面寸法共通。底板 25×108、立上りプレート 4.5×275
- ・断熱材: R=2.5 (λ=0.02 の断熱材 50 mm)

室内側表面の最低温度点の計算結果を図 4.1-10 の矢印部に記した。その結果、+型取合い部が最も低い温度となっているため、CLT 版と CLT 版の取合い部における表面結露対策の検証は+型取合い部において行う。

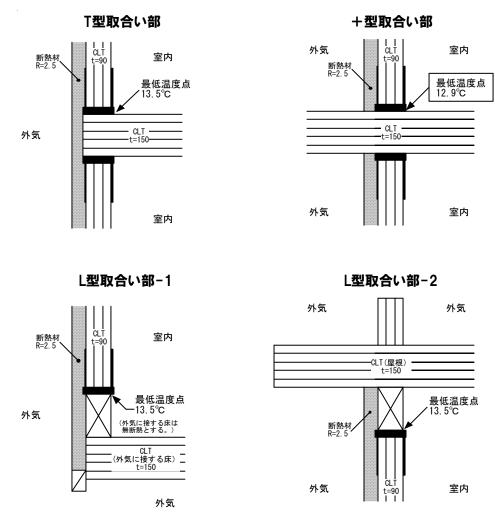


図 4.1-10 取合い部タイプ別の室内側表面の最低温度点

3) +型取合い部における室内側表面結露対策の検討

室内側表面の結露発生は、以下2つの変動要素に影響を受ける。

- ・外気温:外気温が低いほど室内側表面温度を低下させる。
- ・断熱性能:金物廻りをカバーする壁断熱材の熱抵抗値を変動させる。断熱性能が高いほど室内側表面温度が高くなる。

これら2つの変動要素を変動させて、地域に応じた最低断熱性能を計算により求める。

なお、室内側表面結露発生の判定は、室内の温度、湿度から求められる露点温度により行う。

・室内温湿度、露点温度:室内側表面温度が露点温度より低い場合は結露発生の危険性があると判定する。よって、露点温度が評価指標として用いられる。ここでは、性能表示の評価方法基準解説書に記載されている15℃60%の時の露点温度である7.4℃を用いる。また、湿度の高い状況を想定する場合の指標として、参考までに、15℃70%の露点温度9.6℃も併記する。

①計算条件

a. 計算プログラム

INSYS 2 次元 伝熱・結露計算システム Ver. 2/(株)建築環境ソリューションズ b. 計算モデル

CLT版は壁、床ともに90mmとする。薄い方が安全側(厳しい)評価となるため。

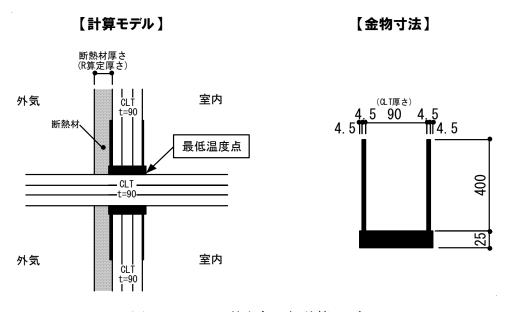


図 4.1-11 +型取合い部計算モデル

c. 外気、室内条件

■外気 ・-20℃~0℃ (5℃刻み)

・地域別最低温度地点 *1/性能表示評価方法基準より

旧 I 地域 (陸別): -19.8℃

旧Ⅱ地域(好摩):-8.2℃

旧Ⅲ地域(諏訪):-6.0℃

旧Ⅳ地域(真岡):-4.7℃

·参考:東京 2.4℃ *2

[*1、*2は、各地点における最寒月における日最低気温の平年値]

■室内温湿度:15℃60%、露点7.4℃(参:15℃70%、露点9.6℃)

d. 断熱材の熱抵抗、及び厚さ設定

断熱材は、熱抵抗の値を 0 (無断熱) と $0.5\sim1.5$ まで 0.25 刻みで設定した。計算には、熱伝導率 $0.02W/(m^3\cdot K)$ の断熱材を用いた。

表 4.1-45 計算に用いた断熱材の熱抵抗と断熱材厚さ

断熱材の熱抵抗 [㎡・K/W]	0	0. 50	0. 75	1.00	1. 25	1. 50
断熱材厚さ[mm] *断熱材λ=0.02W/(㎡・K)	無断熱	10	15	20	25	30

e. 各材料の物性値(熱伝導率)、表面熱伝達率

断熱材を除く計算に用いた各材料の熱伝導率を表 5-2 に、表面熱伝達率を表 5-3 に示す。

表 4.1-46 各材料の熱伝導率

材料名	熱伝導率 [W/(m·K)]				
CLT (天然木材)	0.12				
金物 (鋼)	55. 00				
断熱材 (フェノールフォーム 2 0.020)	0.020				

表 4.1-47 表面熱伝達抵抗

名称	表面熱伝達率 [W/(m²·K)]
外気側表面熱伝達率	25. 0
室内側表面熱伝達率	11. 1

②計算結果:地域別断熱性能別室内側表面最低温度

地域を想定した外気温別、断熱材の熱抵抗別の室内側表面の最低温度を表 4.1-48 に示す。また、計算結果グラフを図 4.1-12、図 4.1-13 に示す。

表 4.1-48 地域別断熱性能別室内側表面最低温度[℃]

外気温		IΒI			旧田	旧田		I⊞IV		
		陸別			好摩	諏訪		真岡		東京
断熱材R	-20.0	-19.8	-15.0	-10.0	-8.2	-6.0	-5.0	-4.7	0.0	2.4
0	-5.2	-5.1	-2.3	0.6	1.6	2.9	3.4	3.6	6.3	7.4
0.50(10)	3.1	3.2	4.8	6.5	7.1	7.9	8.2	8.3	9.9	10.7
0.75(15)	6.9	7.0	8.1	9.2	9.6	10.2	10.4	10.5	11.5	12.1
1.00(20)	8.6	8.6	9.5	10.4						
1.25(25)	9.6	9.6	10.3							
1.50(30)	10.3	10.3	10.9							

- •()内は、λ 0.02断熱材における断熱材厚さ[mm]
- ・斜線欄は、露点9.6℃以上であることが明白であるため未計算である。
- ・濃い網掛け、太文字は、露点7.4℃以下であることを示す。表面結露の危険性が高い。
- ・薄い網掛けは、露点9.6℃以下であることを示す。室内湿度が高い場合などは表面結露の危険性がある。

計算結果より、地域に応じた最低断熱性能の目安は以下の通りとなる。

- >旧 I 地域(主に北海道): 断熱材 R が 1.00 以上(λ 0.02 断熱材で 20 mm以上)
- >旧Ⅱ地域(北東北など): 断熱材 R が 0.75 以上(λ 0.02 断熱材で 15 mm以上)
- >旧Ⅲ地域(南東北など): 断熱材 R が 0.50 以上(λ 0.02 断熱材で 10 mm以上)
- >旧IV地域(北関東など):同上
- ➤東京及び外気温が高い地域:無断熱でも結露発生の危険性は低いが、室内湿度管理が不十分な場合に備えて、断熱材 R が 0.05 以上(λ 0.02 断熱材で 10 mm以上) とすることが望ましい。

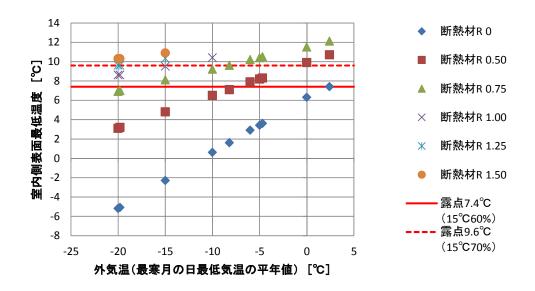


図 4.1-12 計算結果:外気温別の室内側表面最低温度

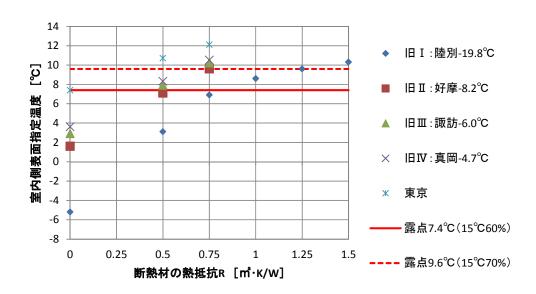


図 4.1-13 計算結果: 断熱材 R 値別の室内側表面最低温度

4.1.5 内部結露対策の検討

1) 検討主旨

「結露対策」には、「表面結露対策」と「内部結露対策」がある。「内部結露」は、発生しても目に触れることが少なく建築物の耐久性に影響を与えるほどになってから表面化することも少なくなく、まえもって、対策の確認が必要な項目である。

ここでは、「内部結露対策」について検討した。

CLT 建築において外壁などの外気に接する部位に CLT を用いた場合、CLT は断熱性能が高いが、接着層を有するため一定の透湿抵抗を有する。また、断熱層を CLT 版の屋外側に設計するか屋内側に設計するかで状況が異なる。地域や断熱方法、断熱材量等による「内部結露対策」について検討した。ここでは、断熱施工を施すことによって生じる内部結露発生の危険性について確認する。

CLT 建築の外壁断熱工法は、CLT の外気側に断熱施工する外側断熱工法を原則であるため、断熱材の外気側に通気層を設けるなど水蒸気の排出を妨げない材料配置とすることで内部発生の危険性を回避できる。つまり、通気層の設置、および防水層には水蒸気を通しやすい透湿防水シートを用いることが原則となる。

一方、CLT の室内側に断熱施工する内側断熱工法の場合は、断熱材の外気側にコンクリートよりも水蒸気を通しにくい CLT があるため層構成上、内部結露発生の危険性が高く、断熱性能が高くなるほどその傾向は顕著となる。内側断熱工法における内部結露対策は、断熱材の室内側に防湿層を設置して、壁体内に室内側の水蒸気を流入させないことが肝要である。なお、防湿層を設置しても、外気条件、断熱仕様(厚いほど内部結露しやすい)によっては防止できないことがあるため、計算等による確認が必要である。

ここでは、寒冷地と温暖地における内部結露発生の危険性について、断熱工法、断熱材の種別ごとに一次元定常計算により確認する。

2) 計算概要

確認する壁体は、断熱工法と通気層の有無により表 4.1-49 に示す 4 種類の層構成を基本とする。断熱材は、繊維系断熱材と発泡プラスチック系断熱材の 2 種類とし、地域、断熱水準に応じて断熱厚さを設定した(表 4.1-50 参照)。

表 4.1-49 計算モデルの基本層構成

	外側断	熱工法	内側断	熱工法
	通気層あり	通気層なし	通気層あり	通気層なし
外気側	サイテ・ィンク・	モルタル	サイテ・ィンク・	モルタル
\uparrow	通気層	アスファルト防水	通気層	アスファルト防水
	透湿防水シート	断熱材	透湿防水シート	CLT 150mm
	断熱材	CLT 90mm	CLT 150mm	断熱材
	CLT 90mm	-	断熱材	防湿フィルム (繊維系断熱材の場合)
	-	-	防湿フィルム (繊維系断熱材の場合)	GB 9.5mm
	-	-	GB 9.5mm	(ビニルクロス)省略 :安全側設定
室内側	ı	-	(ビニルクロス)省略 :安全側設定	-

表 4.1-50 計算に用いた断熱仕様

対象地域	断熱水準	外側と	新熱工法	内側断熱工法					
刈水地域	断热小华	繊維系断熱材	発プラ系断熱材	繊維系断熱材	発プラ系断熱材				
1地域	G1水準	GW32K-155	XPS3種-120	GW32K-185	XPS3種-145				
6地域	G1水準	GW32K-90	XPS3種-70	GW32K-110	XPS3種-85				
	H25水準	GW32K-30	XPS3種-20	GW32K-35	XPS3種-25				

GW32K:グラスウール断熱材 密度32kg品 XPS3種:押出発泡ポリスチレンフォーム第3種

注:XPS3種には、スキン層あり・なしの2種類を設定する。

断熱厚さは、すでに検討した外側断熱工法の場合の最低断熱厚さとした。内側断熱工法の場合の最低断熱材厚さは未検討であるが、断熱層を貫通する熱橋部が外側断熱工法よりも増加することが予想されるため、外側断熱工法よりも約2割増しの断熱厚さとした。

3) 計算条件

a. 計算プログラム

INSYS 結露計算システム Ver. 3. 0. 0/(株) 建築環境ソリューションズ (一次元定常計算プログラム)

b. 温湿度条件

表 4.1-51 温湿度条件

	1地域	6地域
外気	-11.6°C70%	0.9°C70%
室内	10°C	70%

C. 材料物性值

CLT の透湿比抵抗は、建材試験センターにおける試験結果をもとに設定した。それ以外は、H25 年省エネ基準解説書により設定した。

表 4.1-52 材料物性值

材料名	熱伝導率 [W/(m·K)]	透湿比抵抗 [m·s·Pa/ng]	透湿抵抗 [㎡·s·Pa/ng]
モルタル	1.5	0.617	
CLT(3層3プライ)	0.12	1.72	
CLT(5層5プライ)	0.12	1.39	
参考) 木材	0.12	0.25	
断熱材: GW32K	0.036	0.00588	
断熱材: XPS3種(スキンなし)	0.028	0.28	
断熱材:XPS3種(スキンあり)	0.028	0.78	_
防湿フィルム B種	_	_	0.144
透湿防水シート	_	_	0.00019
GB(せっこ う ボード)	0.22	0.0252	

4) 計算結果

計算結果を以下の表 4.1-53 に示す。結露域の有無の列に示す「有」は、材料境界面に おいて実在水蒸気圧が飽和水蒸気圧よりも高く、結露発生の危険性の高いことを示して いる。なお、本計算で用いた定常計算は安全側(厳しい結果となる)の評価となってい ることが多いが、結露発生の危険性の評価としては十分に用いることができる。なお、 限界設計を行いたい場合には、精緻な計算法として非定常計算を行うことも可能である。

表 4.1-53 内部結露計算のバリエーションと計算結果

1-O-1	計算No.	外気条件	断熱工法	通気層		断熱材	断熱厚	結露域 の有無	備考	
1-O-3	1-0-1	1地域	外側断熱	あり	繊維系	GW32K	155mm	無し		
1-O-4	1-0-2				発プラ系	XPS3種(スキン層あり)	120mm	無し		
To - 5	1-0-3					XPS3種(スキン層なし)	120mm	無し		
1-O-5 1-O-6 1-	1-0-4			なし	繊維系	GW32K	155mm	無し		
1-1-1	1-0-5				発プラ系	XPS3種(スキン層あり)	120mm	無し		
1-1-2	1-0-6					XPS3種(スキン層なし)	120mm	無し		
1-1-3	1-I-1		内側断熱	あり	繊維系	GW32K	185mm	有り	防湿層あり	
1-1-3	1-I-2				発プラ系	XPS3種(スキン層あり)	145mm	有り	防湿層 <i>た</i> け	
T-I-5	1-I-3					XPS3種(スキン層なし)	145mm	有り	別が上海 なし	
T-I-6	1-I-4			なし	繊維系	GW32K	185mm	有り	防湿層あり	
1-1-6	1-I-5				発プラ系	XPS3種(スキン層あり)	145mm		防温層な	
6-O-2	1-I-6					XPS3種(スキン層なし)	145mm	有り	70.1年16.0	
6-O-2	6.0.1	C th tat	54 加业C表为	± 11	继继 亚	CM33K	00	4 ш. і		
6-O-3 6-O-4 6-O-5 6-O-6 6-O-6 6-O-7 6-O-8 6-O-9 6-O-10 6-O-11 6-O-12 6-I-3 6-I-4 6-I-5 6-I-6 6-I-6 6-I-7 6-I-8 6-I-9 6-I-10 6-I-10 6-I-11 6-I-		0地以	クトリリを打造さ	めり	桃莊禾	GW32K				
Column					⋧ √=₹	VDC2括/2+1 屋+11)				
6-0-5 6-0-6 6-0-6 20mm 無し 6-0-7 なし 繊維系 GW32K 90mm 無し 6-0-8 6-0-9 30mm 無し 6-0-10 20mm 無し 20mm 無し 6-0-11 20mm 無し 20mm 無し 6-0-12 35mm 無し 52mm 大PS3種(スキン層なし) 52mm 所湿層あり 6-1-2 6-1-3 35mm 無し 52mm 大PS3種(スキン層なし) 大PS3種(スキン層なし) 大PS3種(スキン層なし) 大PS3種(スキン層あり) 大PS3種(スキン層なし) 大PS3をした 大PS3をした 大PS3をした 大PS3をした 大PS3をした 大PS3をした 大PS3をした <t< td=""><td></td><td></td><td></td><td></td><td>光ノノボ</td><td>人と33個(メキン間めり)</td><td></td><td></td><td></td></t<>					光ノノボ	人と33個(メキン間めり)				
G-O-6						VDC2括/2+1 屋41)				
6-O-7 6-O-8 6-O-9 6-O-10 6-O-11 6-O-12 6-I-1 6-I-2 6-I-3 6-I-4 6-I-5 6-I-6 6-I-7 6-I-8 6-I-9 6-I-1 8-I-1 8-						APO3個(A+2)間なし)				
6-O-8 30mm 無し 6-O-9 発プラ系 XPS3種(スキン層あり) 70mm 無し 6-O-10 20mm 無し 6-O-11 20mm 無し 6-O-12 20mm 無し 6-I-1 20mm 無し 70mm 無し 50mm 無し 20mm 無し 50mm 無し 8-I-2 35mm 無し 8-I-3 25mm 無し 8-I-6 25mm 無し 35mm 無し 5mm 6-I-8 35mm 無し 6-I-9 35mm 無し 6-I-10 35mm 無し 8-I-9 35mm 無し 6-I-10 35mm 無し 8-I-9 35mm 無し 8-I-10 35mm 無し 8-I-10 <td></td> <td></td> <td></td> <td><i>†</i>>1</td> <td>## まる</td> <td>CM33K</td> <td></td> <td></td> <td></td>				<i>†</i> >1	## まる	CM33K				
6-O-9 6-O-10 6-O-11 6-O-12 発プラ系 XPS3種(スキン層なし) 70mm 無し 20mm 無し 20mm 無し 20mm 無し 20mm 無し 20mm 無し 35mm 無し 35mm 無し 35mm 無し 25mm 無し XPS3種(スキン層なし) か湿層あり 35mm 無し 25mm 無し 35mm 無し 35mm 無し 25mm 無し 35mm 無し 5元目の 6-I-9 6-I-9 6-I-10 6-I-10 6-I-10 6-I-9 6-I-10 6-I-11 本プラ系 35mm 無し 35mm 無力 35mm 無力				なし		GW32K				
6-O-10 6-O-11 6-O-12 大PS3種(スキン層なし) 70mm 無し 20mm 無し 20mm 無し 20mm 無し 35mm 無し 35mm 無し 35mm 無し 35mm 無し 25mm 無し 25mm 無し 25mm 無し 25mm 無し 25mm 無し 35mm 無し 25mm 無し 35mm 無し 35mm 無し 25mm 無し 35mm まし 35m					※プニ玄	VDC2種(2+1,展+11)				
6-O-11 6-O-12 6-I-1 6-I-2 6-I-3 6-I-4 6-I-5 6-I-6 6-I-7 6-I-8 6-I-9 6-I-10 6-I-10 6-I-10 6-I-11 あり 繊維系 GW32K 110mm 無し 35mm 無し 25mm 無し XPS3種(スキン層なし) 85mm (有り 25mm 無し 35mm 無し 35mm 無し 25mm 無し 35mm 無 35mm 1 35mm 1					元ノノホ	ストの3代主(スキノ間のり)				
6-O-12 6-I-1 内側断熱 あり 繊維系 GW32K 110mm 無し 防湿層あり 防湿層あり 防湿層あり 所湿層あり 無し 25mm 無し 取PS3種(スキン層なし) 85mm 無し 取PS3種(スキン層なし) 25mm 無し 取PS3種(スキン層なし) 25mm 無し 取PS3種(スキン層なし) 25mm 無し 取PS3種(スキン層なし) 85mm 無し 取PS3種(スキン層あり) を では、スキン層あり を では、スキン層あり を では、スキン層あり を では、スキン層あり を では、スキン層あり を では、スキン層あり を では、スキン層なし を では、スキン層な と では、スキン層なし を では、スキン層な と では、スキン のは、スキン層な と では、スキン層な と では、ストの と では						XPS3種(フォン/扇ナンl)				
内側断熱 あり 繊維系 GW32K 110mm 無し 35mm 無し 35mm 無し 35mm 無し 25mm 無し 25mm 無し 25mm 無し 35mm 無し 25mm 無し 35mm 5mm						ハ 〇の主(スイン)音なし)				
6-I-2 35mm 無し 55mm 無し 6-I-3 第プラ系 XPS3種(スキン層あり) 85mm 無し 6-I-4 25mm 無し 大PS3種(スキン層なし) 6-I-5 25mm 無し 大PS3種(スキン層なし) 6-I-6 25mm 無し 大PS3種(スキン層なし) 6-I-7 35mm 無し 大PS3種(スキン層あり) 6-I-8 発プラ系 XPS3種(スキン層あり) 大PS3種(スキン層なし) 6-I-10 25mm 無し 大PS3種(スキン層なし) 85mm 無し 大PS3種(スキン層なし) 大PS3種(スキン層なし)			内側断埶	あり	繊維系	GW32K				
6-I-3 発プラ系 XPS3種(スキン層あり) 85mm 無し 25mm 無し XPS3種(スキン層なし) 85mm 有り 25mm 無し 25mm 無し 35mm 無し 6-I-8 35mm 無し 6-I-9 発プラ系 XPS3種(スキン層あり) 85mm 有り 6-I-10 25mm 無し XPS3種(スキン層なし) 85mm 有り XPS3種(スキン層なし) 85mm 有り 防湿層なし			PIRIMINA	657	小头小正八	GWOZK			防湿層あり	
6-I-4 6-I-5 6-I-6 6-I-6 6-I-7 6-I-8 6-I-9 6-I-10 6-I-10 6-I-11 XPS3種(スキン層あり) XPS3種(スキン層あり) XPS3種(スキン層なし) XPS3種(スキン層なし) ボアS3種(スキン層なし) ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 ボアS3を表する。 <td td="" アンドル="" ボアストル="" ボアストル<=""><td></td><td></td><td></td><td></td><td>発プラ系</td><td>XPS3種(スキン層あり)</td><td></td><td></td><td></td></td>	<td></td> <td></td> <td></td> <td></td> <td>発プラ系</td> <td>XPS3種(スキン層あり)</td> <td></td> <td></td> <td></td>					発プラ系	XPS3種(スキン層あり)			
6-I-5 6-I-6 6-I-6 25mm 無し 6-I-7 なし 繊維系 GW32K 110mm 無し 6-I-8 35mm 無し 6-I-9 6-I-10 85mm 有り 6-I-10 25mm 無し XPS3種(スキン層なし) 85mm 有り 以PS3種(スキン層なし) 85mm 有り 防湿層なし) J J J J K	711 00 1至(スイン/自め //		無 I.		
6-I-6 25mm 無し 6-I-7 なし 繊維系 GW32K 110mm 無し 防湿層あり 6-I-8 6-I-9 6-I-10 6-I-11 XPS3種(スキン層あり) 85mm 無し 防湿層なし XPS3種(スキン層なし) XPS3種(スキン層なし) XPS3種(スキン層なし) 85mm ボール ストン層なし) ボール ボール ボール ボール ボール ボール ボール <t< td=""><td></td><td></td><td></td><td></td><td></td><td>XPS3種(スキン層なL)</td><td></td><td></td><td>防湿層なし</td></t<>						XPS3種(スキン層なL)			防湿層なし	
6-I-7 なし 繊維系 GW32K 110mm 無し 防湿層あり 6-I-8 6-I-9 発プラ系 XPS3種 (スキン層あり) 85mm 有り 6-I-10 6-I-11 XPS3種 (スキン層なし) 85mm 有り が湿層なし						THE OF THE CAMPAGE OF				
6-I-8 35mm 無し 6-I-9 発プラ系 XPS3種(スキン層あり) 6-I-10 25mm 無し KPS3種(スキン層なし) Missing a property in the prope				なし	繊維系	GW32K				
6-I-9 発プラ系 XPS3種(スキン層あり) 85mm 有り 6-I-10 25mm 無し XPS3種(スキン層なし) 85mm 有り									防湿層あり 	
6-I-10 25mm 無し KPS3種(スキン層なし) 85mm 有り					発プラ系	XPS3種(スキン層あり)				
KPS3種 (スキン層なし) A5mm 「病湿層なし」」						- 12		無1.		
						XPS3種(スキン層なし)			防湿層なし 	
,	6-I-12						25mm	無し		

5) まとめ

寒冷地においては、内側断熱工法は防湿フィルム設置などの防露対策を施しても内部 結露の危険性が高い。外側断熱工法は、結露域は発生しておらず内部結露の危険性は低 いが、その条件として「通気層の設置」および「防水層に透湿性の高い透湿防水シート (JIS A6111) 等の使用」が挙げられる。

温暖地は、内側断熱工法で断熱性能の低い(断熱厚が薄い)プラスチック系断熱材による場合に防湿層なしでも結露域は発生していないが、全体の傾向としては寒冷地と同じである。

- ▶内部結露の観点からは、外側断熱工法が望ましい。
- ➤外側断熱工法における内部結露対策として、「通気層の設置」および「防水層に透湿性の高い透湿防水シート (JIS A6111) 等の使用」が望ましい。

4.2 CLT 建築物の温熱性能把握

4.2.1 真庭共同住宅

①外皮表面温度分布調查

測定目的:既存CLT建築物の一つである真庭共同住宅について、サーモカメラを用い、 外皮表面温度分布を屋外・屋内両面から測定しヒートブリッジの有無等、 断熱外皮の性能ムラを確認

建物特性:屋根

外壁

間仕切り壁

床

断熱方法:内断熱

接合金物:壁内ボルト接合方式

場 所:岡山県真庭市勝山

日 時:2015/12/24 17:30~18:30

測定者 : 栗原、正木、加納

測定結果:測定対象建物の1階、3階部分を20℃に加温し、夜間に外部からと室内から外皮表面温度を、サーモ画像で測定した。(図参照)

図 4.2.1-7、図 4.2.1-9、図 4.2.1-11、図 4.2.1-13 より、外部からの測定では、大きな温度ムラは見られず、概ね断熱欠損はないと判断できる。

室内側からの測定では、図 4.2.1-15、図 4.2.1-17、図 4.2.1-19、図 4.2.1-21、図 4.2.1-23、図 4.2.1-25、図 4.2.1-27、図 4.2.1-29、図 4.2.1-31、図 4.2.1-1-33、図 4.2.1-35、図 4.2.1-37、図 4.2.1-39 より、各室の隅角部は、若干の低温部が見られるが、これらは、一般の木造住宅でも見られるレベルで、特段の断熱欠損があるとは思われない。

当該測定物件(内断熱、壁内ボルト接合方式)においては、断熱状況は良好である。

※測定時の外気温度は、約10℃であったので、内外温度差は10degである。

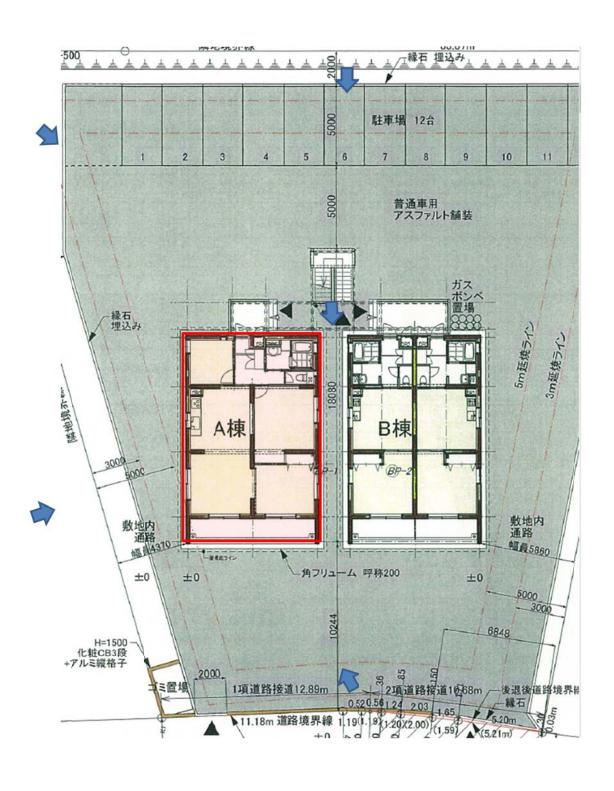


図 4.2.1-1 平面配置図及び熱画像撮影方向

おんどとり 設置場所(5ヶ所)

おんどとり

3階 平面図 (未入居)

エアコン :

図 4.2.1-2 3 階平面図

2階 平面図 世帯向け用 (入 居)

図 4.2.1-3 2 階平面図

1階 平面図 (未入居)

図 4.2.1-4 1 階平面図

図 4.2.1-5 サーモ画像測定時内外温度

図 4.2.1-6 外観① (南西面)

図 4.2.1-7 外観① (南西面) サーモ画像

図 4.2.1-8 外観② (南面)

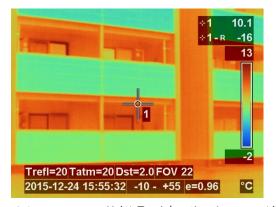


図 4.2.1-9 外観② (南面) サーモ画像

図 4.2.1-10 外観③ (北西面)

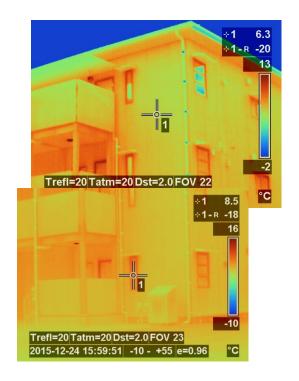


図 4.2.1-11 外観③ (北西面) サーモ画像

図 4.2.1-12 外観④ (境面)

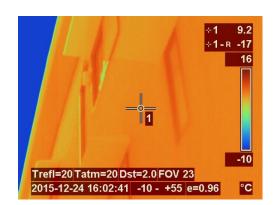


図 4.2.1-13 外観④ (境面) サーモ画像

図 4.2.1-14 室内① 1階LD南西

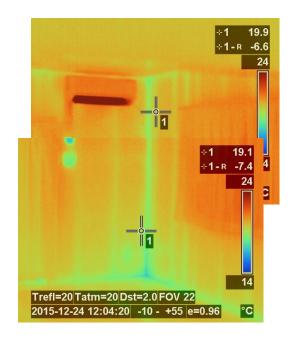


図4.2.1-15 室内① 1階LD南西 サーモ画像

図 4.2.1-16 室内② 1階LD南東

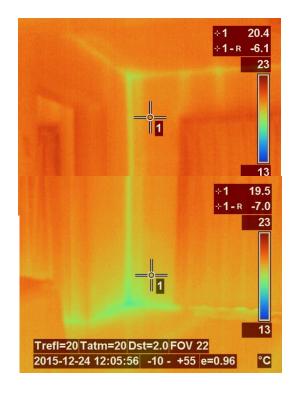


図 4.2.1-17 室内② 1階LD南東 サーモ画像

図 4.2.1-18 室内③ 1 階 LD 南東

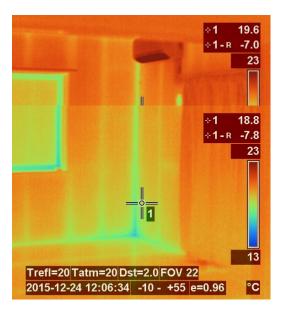


図 4.2.1-19 室内③ 1階LD南東 サーモ画像

図 4.2.1-20 室内④ 1 階子供室北西

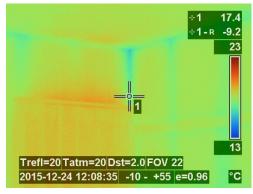


図 4.2.1-21 室内④ 1階子供室北西サーモ画像

図 4.2.1-22 室内⑤ 1 階寝洗面室北

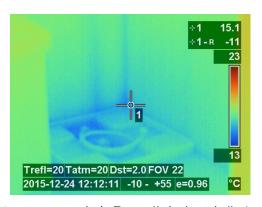


図 4.2.1-23 室内⑤ 1階寝洗面室北サーモ画像

図 4.2.1-24 室内⑥ 3 階 LD 南西

図 4.2.1-25 室内⑥ 3階LD南西サーモ画像

図 4.2.1-26 室内⑦ 3階LD南東

図 4.2.1-27 室内⑦ 3 階 LD 南東サーモ画像

図 4.2.1-28 室内⑧ 3階LD南東

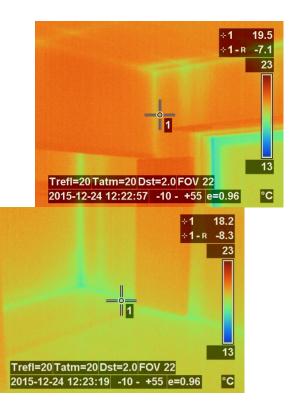


図 4.2.1-29 室内⑧ 3階LD南東サーモ画像

図 4.2.1-30 室内⑨ 3 階キッチン西

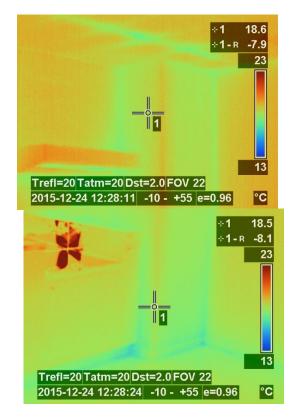


図 4.2.1-31 室内⑨ 3 階キッチン西サーモ画像

図 4.2.1-32 室内⑩ 3 階子供室北西

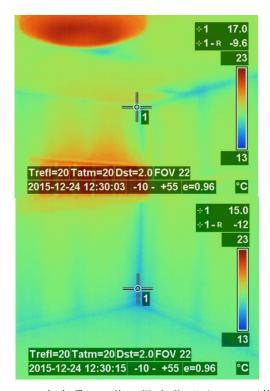


図 4.2.1-33 室内⑩ 3 階子供室北西サーモ画像

図 4.2.1-34 室内(1) 3 階寝室西

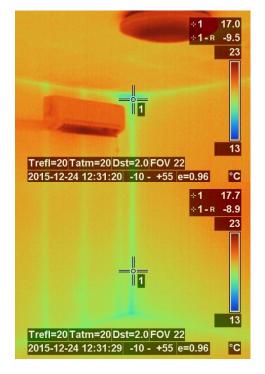


図 4.2.1-35 室内① 3階寝室西 サーモ画像

図 4.2.1-36 室内⑫ 3 階寝室東

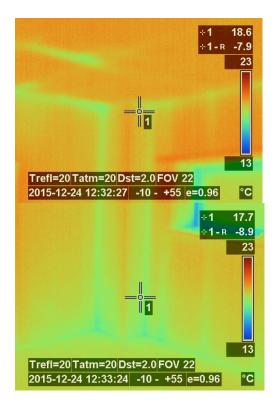


図 4.2.1-37 室内⑫ 3階寝室東サーモ画像

図 4.2.1-38 室内⑬ 3 階寝洗面室北 図 4.2.1-39 室内⑬ 3 階寝洗面室北サーモ画像

②電力使用量の調査

表 4.2.2-1 に、各部屋の使用電力量をさらに、各部屋の消費電力、5月を基準とした各部屋の消費電力の増減をグラフとしたものを、図 4.2.2-1、図 4.2.2-2 に示す。

図 4.2.2-1、図 4.2.2-2 より、単身者用居室の電力消費量は夏季にもそれほど大きく変化していないが、世帯者居室は夏季及び冬季に増加していることが分かる。これは、生活パターンとして日中在室し、小さなお子さんがいらっしゃる世帯者居室とそうでない単身者用居室の差が大きく影響しているものと思われる。

また、後述のアンケート調査において、「省エネを意識している」と回答のあった 302 については、消費電力において、その傾向もみられる。また、203 においては、「省エネを意識はしていない」と回答があった。冬季の消費電力はやや多いが、夏季の消費電力にはそれほど多い傾向はみられない。



図 4.2.1-40 各部屋の消費電力

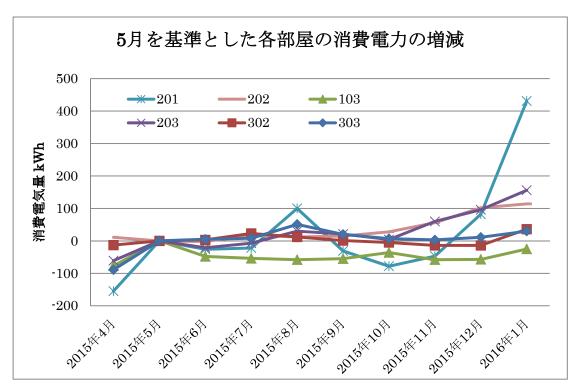


図 4.2.1-41 5月を基準とした各部屋の消費電力の増減

表 4.2.1-1 各部屋の使用電力量

単位:kWh

													1 1-1-4	
														単位:kwh
単身	アンケート	部屋番号	2015年4月	2015年5月	2015年6月	2015年7月	2015年8月	2015年9月	2015年10月	2015年11月	2015年12月	2016年1月	2016年2月	2016年3月
	1 あり	303	15	104	109	112	155	124	111	107	115	134		
	2あり	302	65	78	81	101	90	79	73	64	64	114		
	3あり	203	24	85	64	78	115	106	89	145	181	241		
	4あり	202	109	98	96	115	110	113	126	154	200	212		
	5あり	103	25	102	54	48	44	47	66	44	45	11		
	6 X	102	-	-	-	-	-	-	-	-	-	-	-	
世帯	アンケート	部屋番号	2015年4月	2015年5月	2015年6月	2015年7月	2015年8月	2015年9月	2015年10月	2015年11月	2015年12月	2016年1月	2016年2月	2016年3月
	X	101	-	-	-	-	-	-	-	-	-	-	-	
	1 あり	201	99	254	228	232	354	223	176	207	336	685	336	
	X	301	-	-	-	-	-	-	-	-	-	-	-	

世帯用	単身	身用
301	302	303
201	202	203
101	102	103
黄色セル: 白 セル:		

③ 住まい方アンケート調査

住まい方アンケート調査結果を、表 4.2.2-2 から表 4.2.2-7 に示す。

お子さんのいらっしゃる世帯者住居(201)のみが、平日の日中在室で、他の単身者住居は 平日の日中は不在である。また、単身者(302)が、「省エネ意識をしている」と回答さ れている。

表 4.2.1-2 消費電力 アンケート ①

消費電力調査 アンケート

記入日:27年/2月2日 201 部屋番号

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業 の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

上記内容に同意いただけますか?

いいえ

1 居住されている家族構成についてお聞きします。 該当するものに〇をつけてください。世帯の場合、家族構成についてもご記入ください。

・世帯(世帯構成: 夫, 塾, 多係(人計 3 人) (例)夫、妻、子供1人)

2 生活リズムについてお聞きします。 日頃、在宅されている時間帯に人数(5歳以上の方)と、 エアコンなどの空訓機器を使用する時間をご記入ください。 (日常の平均的な内容をお書きください。)

時間	設定温度	20	21	22
人数		0	2	2
真夏	27°C	0	Х	×
真冬	20°C	0	0	x

世帯用

301

201

101

302

202

102

303

203

103

	- Η																									
時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		2	2	2	2	2	¥	2	2	1	1	1	1	1	-{	7	1	1	7	/	Y	2	2	2	2	2
真夏	2º 4sc	9	0	0	Q	0	0	0	G	9	0	0	0	<	0	<0	\bigcirc	1500	grana. Nagyari	0	0	0	0	0	0	\bigcirc
真冬	23 ℃								4)	0	0	0	0	0	0	\circ	0	0	0	0	0	0	0	0	9	
- 休	: FI																									

	м	· H																									
時間	j	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数	ξ		2	.2	Ν	2	2	2	2	2	2	2	2	₹.	2	2	2	2	2	2	2	2	2	2	2	2	2
真夏		JR 80	O	0	0	0	0	Q	Q.	O	0	Q	0	0	0	0	0	Q	0	Q	0	Q	0	0	0	0	\Diamond
真冬		J3 ℃								Q	0	0	0	0	0	0	0	0	0	0	0	0	G2	0	0	0	

3 空調の使用についてお聞きします。

使用している空調について、該当するものに〇をつけてください。 ・主たる居室(リビングなど)について

エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒーター

電気ヒーター、ホットガーペット、こたつ、その他(・その他の居室(寝室、キッチンなど)について

エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒー 電気ヒーター、ホットカーペット、こたつ、その他(

4 給湯機器についてお聞きします。

都市ガス、プロパンガス、石油、電気、その他(

5 省エネルギーを意識して生活されていますか?該当するものに〇をつけてください。ex. こまめなON、OFF 控え目な室温設定 等かなり意識している・ 意識している ・ あまり意識していない・意識していない

6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか?

機器名: エアコン	_
機器名: 方為 厚	_
機器名: チレビ	_
	_

事務局記録欄

0	対象宅の形式:	1.	戸建	2.	共同住宅	3.	非住宅
•	対象字の時・	1	1 (8)	2	中四時	2	显上账

3. 2面外壁 外壁の状況 : 1.4面外壁 2.3面外壁 4. 1面外壁

•		•

表 4.2.1-3 消費電力 アンケート ②

消	書雷	カ調査	アンケート
/ []	Sec. 144-1	/ J DM EL	, , , ,

部屋番号 ンクユー 記入日: 28年 / 月 6 日

302

202

303

203 103

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。	
上記内容に同意いただけますか? はい・ いいえ	世帯用
1 居住されている家族構成についてお聞きします。 該当するものに〇をつけてください。世帯の場合、家族構成についてもご記入ください。	301
・単身 ・世帯(世帯構成: 計 人)	201
(例)夫、妻、子供1人)	
2 生活リズムについてお聞きします。	2 ×
時間 Retain 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 25 25 25 25 25	23 24
<u>真夏 →8 ° × × × × × × × × × × × × × × × × × × </u>	_
·休日 時間 ^{銀定編章} 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	_
大数	
3 空調の使用についてお聞きします。 使用している空調について、該当するものに○をつけてください。 ・主たる居室(リビングなど)について エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター(ガスファンヒーターで、カーペット、こたつ、その他()) ・その他の居室(寝室、キッチンなど)について エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒーターで、気ヒーター、ホットカーペット、こたつ、その他()) 4 給湯機器についてお聞きします。 都市ガス、プロパンガス、石油、電気、その他()) 5 省エネルギーを意識して生活されていますか?該当するものに○をつけてください。 ex. こまめなのN、OFF 控え目な室温設定等かなり意識している・意識している・意識している・参まり意識していない・意識していない 6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか?	
機器名: 機器名: 機器名: 機器名: ・ 対象宅の形式: 1. 戸建 2. 共同住宅 3. 非住宅 ・ 対象宅の階: 1. 1階 2. 中間階 3. 最上階 ・ 外壁の状況: 1. 4面外壁 2. 3面外壁 4. 1面外壁	
• メ モ:	

表 4.2.1-4 消費電力 アンケート ③

消費電力調査 アンケート

部屋番号 302

記入日:2015年12月2日

時間 数定温度 20 21 22

単身用

303

203

103

302

202

102

世帯用

301

201

2

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業 の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

上記内容に同意いただけますか?	上記	内容	312	同意し	ハただ	けます	すか?
-----------------	----	----	-----	-----	-----	-----	-----

(はい) いいえ

1 居住されている家族構成についてお聞きします。 該当するものに〇をつけてください。世帯の場合、家族構成についてもご記入ください。

_	224	-
	=	
l l	_	~
`		_

•世帯 (世帯構成: (例)夫、妻、子供1人) 計 人)

2 生活リズムについてお聞きします。 記入例 日頃、在宅されている時間帯に人数(5歳以上の方 エアコンなどの空調機器を使用する時間をご記入く

(日常の平均的な内容をお書きください。)

) کے (人数		0	
(ださい。	真夏	27°C	0	×
	真冬	20°C	0	C

• •	- 🗖																									
時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		1	1	1	1	1	- 1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
真夏	25°C	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	0	×	×
真冬	20°C	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	0	×	×
- 休	日			_																						
時間	股定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	-1	1	1	1	1	1
古百	25°C	~	~	v	v	~	v	>	~	~	>	v	v	~	v	>	~	v	~	~	>	$\overline{}$	$\overline{}$	$\overline{}$	v	~

3 空調の使用についてお聞きします。
使用している空調について、該当するものに〇をつけてください。
・主たる居室(リビングなど)について

(エアコン(冷房)、扇風機(エアコン(服房)、石油ファンヒーター、ガスファンヒーター
電気ヒーター、ホットカーペット、こたつ、その他()
・その他の居室(寝室、キッチンなど)について

(エアコン(冷房)、扇風機(エアコン(服房)、石油ファンヒーター、ガスファンヒーター
電気ヒーター(ホットカー)、たたつ、その他()

- 4 給湯機器についてお聞きします。 都市ガンプロパンカン、石油、電気、その他(
- 5 省エネルギーを意識して生活されていますか?該当するものに○をつけてください。 ex. こまめなON、OFF 控え目な室温設定 等 かなり意識している ・ 意識して○る ・ あまり意識していない ・意識していない
- 6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか?

	独してかり		Se 111 - 710 - 17 7 0 1	
理 里 夕 .				
機器名:		 		

事務局記録欄

対象宅の形式: 1. 戸建 2. 共同住宅 3. 最上階

 対象宅の階: 1.1階 2.中間階
 外壁の状況: 1.4面外壁 2.3面外壁 3. 2面外壁 4. 1面外壁

表 4.2.1-5 消費電力 アンケート ④

消費電力調査 アンケート

部屋番号 1 0 3 号 記入日:27年12月7日

人)

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業 の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

上記点	り突に	同章	いただ	ナまっ	ナかっ

(風)い ・ いいえ

1 居住されている家族構成についてお聞きします。 該当するものに〇をつけてください。世帯の場合、家族構成についてもご記入ください。 世帯用 用魚単 301 201 203 103 101 102

· 🗐

·世帯 (世帯構成:

(例)夫、妻、子供1人)

2 生活リズムについてお聞きします。 記入例 日頃、在宅されている時間帯に人数(5歳以上の方)と、 エアコンなどの空調機器を使用する時間をご記入ください。 (日常の平均的な内容をお書きください。)

時間	設定温度	20	21	22
人数		0	2	2
Table Table	0.700		2.4	2.4
具复	2/0)	X	Х

平日

時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		-1	- 1	-1	1	1	- 1	1	- 1	0	0	0	0	0	0	0	0	0	0	- 1	1	1	- 1	- 1	1	1
真夏	26°C	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	0	0	0
真冬	20°C	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	0	0	0
- 41	F																									

- 17	H																									
時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		1	1	1	1	1	1	1	-1	0	0	0	0	0	0	0	0	0	0	-1	1	-1	-1	- 1	-1	- 1
真夏	26°C	0	0	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	0	0	0

3 空調の使用についてお聞きします。

空調の使用についてお聞きします。
使用している空調について、該当するものに〇をつけてください。
・主たる居室(リビングなど)について
エアコン(令房)、局風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒーター
電気・ター、ホットカーペット、こたつ、その他()
・その他の居室(寝室、キッチンなど)について
エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒーター

電気ヒーター、ホットカーペット、こたつ、その他(

4 給湯機器についてお聞きします。 都市ガス、プロパンガス、石油、電気 その他(

5 省エネルギーを意識して生活されていますか?該当するものに〇をつけてください。 ex. こまめなON、OFF 控え目な室温設定 等 かなり意識している ・ 意識している ・ あまり意識していない ・意識していない

6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか?

機器名: エアコン 機器名: スレビ

事務局記録欄

● 対象宅の形式: 1. 戸建 2. 共同住宅 ● 対象宅の階: 1. 1階 2. 中間階 ● 外壁の状況: 1. 4面外壁 2. 3面外壁 3. 非住宅 3. 最上階

3. 2面外壁 4. 1面外壁

消費電力調査 アンケート

部屋番号 203号 記入日:2015年 12月 3日

302

202 102

303 203

103

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

上記内容に同意いただけますか? はい・ いいえ	世帯用	
1 居住されている家族構成についてお聞きします。 該当するものに○をつけてください。世帯の場合、家族構成についてもご記入ください。	301	302
	201	202
・単身・世帯(世帯構成: 計 人) (例)夫、妻、子供1人)	101	102
2 生活リズムについてお聞きします。 記入例 時間 №※## 20 21 22 日頃、在宅されている時間帯に人数(5歳以上の方)と、		
時間 原産業化 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	24 1 O±7	アコン
真夏 21°C A A A A A A X X X X X X X X X X X X X	▲ ▲扇川	
真冬 30℃ × × × × × × O × × ×	× ▽電気	気ヒーター
時間 数定編度 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	24	
人数	1	
夏冬 30°C××××××××××××××××××××××××××××××××××××	×	
使用している空調について、該当するものに〇をつけてください。 ・主たる居室(リビングなど)について エマコン(浄房(、扇風機、ビアコン)(暖房)、石油ファンヒーター、ガスファンヒーター 電気ビーター、ホットカーペット、こたつ、その他() ・その他の居室(寝室、キッチンなど)について エマコン(浄房(、扇風機、ビアコン)暖房)、石油ファンヒーター、ガスファンヒーター 電気ビーター、ホットカーペット、こたつ、その他()		
# 柏海飯語についてお聞きします。 都市ガス、プロバンガス、石油、電気、その他()		
5 省エネルギーを意識して生活されていますか?該当するものに〇をつけてください。 ex. こまめなON、OFF 控え目な室温設定 等かなり意識している・意識している・あまり意識していない。		
6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか? 機器名: 洗濯機(乾燥機能を使用するため) 機器名: 機器名:		
野務局記録欄		

消費電力調査 アンケート

部屋番号 3 0 3 記入日:平成27年12月 9日

本アンケートは、建築技術支援協会ならびに日本CLT協会が実施する、平成27年度林野庁委託事業 の一環で行います。得られた情報は、報告書にまとめると共に、広く一般に公開いたします。 氏名は公表しません。

Н	記	力	容	I	Б	意	L١	1-	†÷	Н	ます	ナか	1?

(はい) ・ いいえ

1 居住されている家族構成についてお聞きします。 該当するものに〇をつけてください。世帯の場合、家族構成についてもご記入ください。 世帯用 303 301 302 201 202 203 101 102 103

·世帯 (世帯構成: (例)夫、妻、子供1人)

計 人)

2 生活リズムについてお聞きします。 日頃、在宅されている時間帯に人数(5歳以上の方)と、 エアコンなどの空調機器を使用する時間をご記入ください。 (日常の平均的な内容をお書きください。)

時間	設定温度	20	21	22
人数		0	2	2
真夏	27°C	0	×	×
真冬	20°C	0	0	×

時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		1	- 1	1	1	1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	1	1
真夏	25 °C	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	×
真冬	26 °C	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	0	0	×
-14	日																									_
時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1 **/*			-	-	-	-	-	-	-	-	4		-			_	_	-	0	-		-	-	-	4	-

時間	設定温度	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
人数		1	- 1	1	1	1	1	1	1	- 1	1	1	1	1	1	0	0	0	0	1	1	1	- 1	1	1	1
真夏	25 °C	×	×	×	×	×	×	×	×	0	0	×	×	×	×	×	×	×	×	×	0	0	0	×	×	×
真冬	26 °C	×	×	×	×	×	×	×	×	0	0	×	×	×	×	×	×	×	×	×	0	0	0	×	×	×

3 空調の使用についてお聞きします。

使用している空調について、該当するものに〇をつけてください。 ・主たる居室(リビングなど)について

エアコン(冷房)、扇風機、エアコン(暖房)、石油ファンヒーター、ガスファンヒー

電気ヒーター、ホットカーペット、こたつ、その他()
・その他の民室(寝室、キッチンなど)について
「エアコン(冷房)、扇風、エアコン(暖房)、石油ファンヒーター、ガスファンヒーター電気ヒーター、ホットカーペット、こだつ、その他()

4 給湯機器についてお聞きします。 都市ガスプロパンカス、石油、電気、その他(

5 省エネルギーを意識して生活されていますか?該当するものに○をつけてください。 ex. こまめなON、OFF 控え目な室温<u>設定 等</u> かなり意識している ・ 意識している あまり意識して**ひ**ない ・意識していない

6 家電製品の内で、電力を多大に消費していると思われる機器等は有りますか?

機器	名: 一般的	なもの	冷蔵庫	エアコン学	Ŧ	
.機器:	ጸ :					
機器	<u>8:</u>					

事務局記録欄

対象宅の形式: 1. 戸建 2. 共同住宅 3. 非住宅 2. 中間階 3. 最上階

 対象宅の階: 1.1階 2.中間階
 外壁の状況: 1.4面外壁 2.3面外壁 3. 2面外壁 4. 1面外壁

4.2.2 つくば実験棟の外皮性能

1)目的と目指す外皮性能

つくば実験棟において、HEAT20^{**1}の G1 グレードを満たす外皮性能にするための外皮性 能の確認と計算を行った。

※1 HEAT20:住宅の省エネルギー化のための技術開発、評価手法開発、普及啓発を目的 とした民間団体。省エネ基準や性能表示の断熱等級 4 より上の外皮グレード (G1、G2) を 提案している。

※2 G1 グレード

外皮平均熱貫流率の基準値を地域区分ごとに設定している。

表 4.2.2-1 HEAT20FG12G 断熱性能水準 外皮平均熱貫流率 UA 値 [W/(m²·K)

推奨グレード		地域区分												
推奨グレート	1	2	3	4	5	6	7	8						
HEAT20 G1	0.34	0.34	0.38	0.46	0.48	0.56	0.56	-						
HEAT20 G2	0.28	0.28	0.28	0.34	0.34	0.46	0.46	-						

実験棟の建設地つくば市は5地域であるため、U_A値0.48を、満たす仕様を確認した。

- 2) 外皮性能計算結果
- 結果

G1 グレードの U_{A} 値 0.48 に適合する性能を確認した。

表 4.2.2-2 外皮性能計算結果

住戸名称	地域区分		۶ S	ト皮性能計算結!		
		U _A [W/(m³·K)]	η _A (冷房期) [-]	q [W/K]	m _C [W/(W/m²)]	m _H [W/(W/m³)]
つくば実験棟	5地域	0.48	1.8	247.6	9.19	7.94

HEAT20 G1推奨水準	0.48	3.0
適否	OK	OK

※UA 値、 η A 値ともに、G1 グレード推奨水準以下である。

② 計算表

表 4.2.2-3 U_A 値、 q 値算出表

			Α	L	U	Н	$A(L) \times U \times H$	
i	部位	隣接空間	面積	長さ	U:熱貫流率	温度差係数	貫流熱損失	
			[m³]	[m]	$[W/(m^{2}\cdot K)]$	[-]	[W/K]	
					$[W/(m \cdot K)]$			
屋根①		外気	96.00	-	0.254	1.00	24.38	
屋根②		外気	4.00	-	0.226	1.00	0.90	
外壁	①CLT90+GW32K100	外気	141.50	-	0.288	1.00	40.75	
(開口部・パッキン部面積を除く)	②CLT150+ネオマ50	外気	125.50	-	0.269	1.00	33.76	
	③CLT90+ネオマ50	外気	6.16		0.311	1.00	1.92	
外壁パッキン部分	①1F CLT90+GW32K100	外気	0.56	-	0.121	1.00	0.07	
	②1F CLT150+ネオマ50	外気	0.47		0.140	1.00	0.07	
	③1F CLT90+ネオマ50	外気	0.05	-	0.121	1.00	0.01	
開口部	玄関ドア	外気	3.16	-	4.65	1.00	14.69	
	窓 WW	外気	37.58	-	2.33	1.00	87.56	
	窓 AW	外気	6.89		1.95	1.00	13.44	
外気に接する床	1	外気	3.00	=	0.225	1.00	0.68]
外気に接する床	2	外気	9.00	-	0.225	1.00	2.03	
土間床等	土間床面積	-	88.00	-	-	-	-	
	土間外周	外気	-	42.000	0.551	1.00	23.14	躯体+開口部の熱損失
	(玄関)	床下	-	0.000		0.70	0.00	243.39
i)L字出隅 木熱橋無	金物90	外気	(金物熱橋)	2.6	0.036	1.00	0.09	
i)L字出隅 木熱橋無	金物150	外気	(金物熱橋)	2.4	0.036	1.00	0.09	
ii)L字入隅 木熱橋無	金物90	外気	(金物熱橋)	1.6	0.036	1.00	0.06	
ii)L字入隅 木熱橋無	金物150	外気	(金物熱橋)	0.6	0.036	1.00	0.02	
iii)T字 木熱橋無	金物90	外気	(金物熱橋)	4.0	0.020	1.00	0.08	
iii)T字 木熱橋無	金物150	外気	(金物熱橋)	1.6	0.034	1.00	0.05	
v)L字 木熱橋有	金物90	外気	(金物熱橋)	1.7	0.005	1.00	0.01	
vi)十字 木熱橋有	金物90	外気	(金物熱橋)	0.4	0.030	1.00	0.01	
vi)十字 木熱橋有	金物150	外気	(金物熱橋)	1.0	0.060	1.00	0.06	
vii)十字 木熱橋有	金物90	外気	(金物熱橋)	0.3	0.051	1.00	0.02]
vii)十字 木熱橋有	金物150	外気	(金物熱橋)	0.4	0.051	1.00	0.02	
viii) アンカー	金物90	外気	(金物熱橋)	2.4	0.497	1.00	1.19	
viii) アンカー	金物150	外気	(金物熱橋)	2.8	0.497	1.00	1.39	金物数218個
v)L字 木熱橋有	CLT90	外気	(木部熱橋)	24.0	0.040	1.00	0.96	
vi)十字 木熱橋有	CLT90	外気	(木部熱橋)	8.0	0.007	1.00	0.06	
vi)十字 木熱橋有	CLT150	外気	(木部熱橋)	5.0	0.013	1.00	0.07	
vii)十字 木熱橋有	CLT90	外気	(木部熱橋)	5.0	0.000	1.00	0.00	接合部の熱損失
vii)十字 木熱橋有	CLT150	外気	(木部熱橋)	4.0	0.000	1.00	0.00	4.18
								1.7%
		ΣΑ	521.87			q:		= Σ (A·U·H)
						U _A :	0.474	$= \sum (A \cdot U \cdot H) / \sum A$

表 4.2.2-4 mC、η A (冷房期) の算出表

3	部位	方位	ν 方位係数	A 面積	U:熱貫流率	η (U×0.034) 日射熱取得率	ν × A × η 日射熱取得量
				[m ²]	[W/(m·K)]	[-]	[W/K]
を根(開口部面積を除く)		屋根・上面	1.000	[m] 96.00	[W/(m•K)] 0.254	0.009	0.829
根(ルーフバルコニー)		屋根・上面	1.000	4.00		0.008	0.031
壁	外壁① 1F	東	0.500	55.36	0.000	0.000	0.000
口部・パッキン部面積を除く)	CLT90+GW32K100	北	0.373	20.83	0.000	0.000	0.000
		西	0.518	42.80	0.000	0.000	0.000
		南	0.472	22.51	0.000	0.000	0.000
壁	外壁②1F	東	0.500	36.82	0.000	0.000	0.000
口部・パッキン部面積を除く)	GL1150+本本450	<u>北</u> 西	0.373 0.518	27.61 45.72	0.000	0.000	0.000
		南	0.472	15.35	0.000	0.000	0.000
壁	外壁③1F	東	0.500	0.00	0.000	0.000	0.000
	CLT90+ネオマ50	北	0.373	6.16	0.000	0.000	0.000
		西	0.518	0.00	0.000	0.000	0.000
		南	0.472	0.00	0.000	0.000	0.000
台パッキン部分	外壁①に設置分	東	0.500	0.18	0.121	0.004	0.000
	(パッキン幅90mm)	西	0.518	0.28	0.121	0.004	0.001
	外壁②に設置分	東	0.472 0.500	0.10 0.18	0.121 0.121	0.004 0.004	0.000
	が壁(ジー) 設直が (パッキン幅150mm)	北	0.373	0.18	0.121	0.004	0.000
	(·) (- TE (O (((())	西西	0.518	0.13	0.121	0.004	0.000
		南	0.472	0.08	0.121	0.004	0.000
	外壁③に設置分 (パッキン幅90mm)	北	0.373	0.05	0.121	0.004	0.000
 □部	玄関ドア	西	0.518	3.16	4.65	0.158	0.259
•	窓 WW	-	0.000	37.58		算出表より→	8.003
	窓 AW	-	0.000	6.89			
えに接する床	1	-	0	3.00	-	-	-
に接する床	2	-	0	9.00	-	-	-
床等	土間床面積	- "	0	88.00	-	-	-
)L字出隅 木熱橋無	金物90	北	0.373	0.4	0.036	0.001	0.000
L字出隅 木熱橋無 L字出隅 木熱橋無	金物90 金物90	東	0.518 0.500	0.2	0.036 0.036	0.001	0.001
L字出隅 木熱橋無	金物150	西	0.518	2.4	0.036	0.001	0.002
L字入隅 木熱橋無	金物90	北	0.373	0.2	0.036	0.001	0.000
L字入隅 木熱橋無	金物90	西	0.518	0.6	0.036	0.001	0.000
L字入隅 木熱橋無	金物90	東	0.500	0.8	0.036	0.001	0.000
)L字入隅 木熱橋無	金物150	西	0.518	0.6	0.036	0.001	0.000
ii)T字 木熱橋無	金物90	北	0.373	0	0.020	0.001	0.000
ii)T字 木熱橋無	金物90	西	0.518	1	0.020	0.001	0.000
ii)T字 木熱橋無 ii)T字 木熱橋無	金物90	東	0.500 0.472	2.6 0.4	0.020 0.020	0.001	0.001
ii)T字 木熱橋無	金物90 金物150	市北	0.472	0.4	0.020	0.001	0.000
iii)T字 木熱橋無	金物150	東	0.500	1	0.034	0.001	0.000
iii)T字 木熱橋無	金物150	南	0.472	0.4	0.034	0.001	0.000
v)L字 木熱橋有	金物90	北	0.373	0.5	0.005	0.000	0.000
v)L字 木熱橋有	金物90	東	0.500	0.8		0.000	0.000
v)L字 木熱橋有	金物90	南	0.472	0.4	0.005	0.000	0.000
vi)十字 木熱橋有	金物90	北	0.373	0		0.001	0.000
vi)十字 木熱橋有	金物90	南	0.472	0.4	0.030 0.060	0.001 0.002	0.000
vi)十字 木熱橋有 vii)十字 木熱橋有	金物150 金物90	市北	0.472 0.373	0.3	0.060	0.002	0.000
vii)十字 木熱橋有	金物150	北	0.373	0.3	0.051	0.002	0.000
viii)アンカー	金物90	北	0.373	0.4	0.497	0.017	0.003
viii) アンカー	金物90	西	0.518	0.6	0.497	0.017	0.005
viii) アンカー	金物90	東	0.500	1	0.497	0.017	0.008
viii) アンカー	金物90	南	0.472	0.4	0.497	0.017	0.003
viii) アンカー	金物150	北	0.373	0.6	0.497	0.017	0.004
viii)アンカー	金物150	西	0.518	0.6	0.497	0.017	0.005
viii)アンカー	金物150	東	0.500	0.6	0.497 0.497	0.017 0.017	0.008
viii) アンカー v)L字 木熱橋有	金物150 CLT90	市北	0.472 0.373	6.0	0.497	0.017	0.005
v)L字 木熱橋有	CLT90	東	0.573	12.0	0.040	0.001	0.003
v)L字 木熱橋有	CLT90	南	0.472	6.0	0.040	0.001	0.004
vi)十字 木熱橋有	CLT90	北	0.373	2.0	0.007	0.000	0.000
vi)十字 木熱橋有	CLT90	南	0.472	6.0	0.013	0.000	0.001
vi)十字 木熱橋有	CLT150	南	0.472	5.0	0.000	0.000	0.000
vii)十字 木熱橋有	CLT90	北	0.373	5.0	0.000	0.000	0.000
	CLT150	北	0.373	4.0	0.000	0.000	0.000
vii)十字 木熱橋有		•	ΣΑ	521.87		m _C :	9.190

表 4.2.2-5 窓の日射熱取得量(冷房期)の算出表

				ν	A	η	fc	η c(η ×fc)	ν×Α×ης
窓種類	窓No.	設置壁	方位	方位係数	面積	日射熱取得率	取得日射量	日射熱取得率	日射熱取得量
		(窓は全て外			[m³]	(補正前)	補正係数	(補正後)	[W/K]
		壁①に設置)				[-]	[-]	[-]	
WW	101	一階廊下	東	0.500	1.47	0.40	0.930	0.372	0.273
WW	103	階段室	西	0.518	0.88	0.40	0.930	0.372	0.170
WW	103	階段室	西	0.518	3.23	0.40	0.930	0.372	0.623
WW	102	廊下	南	0.472	3.47	0.40	0.930	0.372	0.610
WW	102	廊下	南	0.472	0.93	0.40	0.930	0.372	0.164
WW	202	ワークスペース	東	0.500	1.35	0.40	0.930	0.372	0.251
WW	201	ワークスペース	東	0.500	0.81	0.40	0.930	0.372	0.151
WW	201	ワークスペース	東	0.500	3.02	0.40	0.930	0.372	0.560
WW	206	ホール	東	0.500	0.81	0.40	0.930	0.372	0.151
WW	206	ホール	東	0.500	2.78	0.40	0.930	0.372	0.516
WW	205	リビング	南	0.472	1.46	0.40	0.930	0.372	0.257
WW	204	リビング	南	0.472	4.73	0.40	0.930	0.372	0.831
WW	203	吹抜け	南	0.472	3.77	0.40	0.930	0.372	0.662
WW	203	吹抜け	南	0.472	1.01	0.40	0.930	0.372	0.178
WW	303	設備機械室	北	0.373	0.49	0.40	0.930	0.372	0.068
WW	303	設備機械室	北	0.373	1.68	0.40	0.930	0.372	0.233
WW	302	吹抜け	南	0.472	1.32	0.40	0.930	0.372	0.232
WW	301	吹抜け	南	0.472	4.38	0.40	0.930	0.372	0.769
AW	102	個室 1	西	0.518	1.73	0.40	0.930	0.372	0.333
AW	101	個室 2	西	0.518	1.93	0.40	0.930	0.372	0.371
AW	302	設備機械室	東	0.500	1.62	0.40	0.930	0.372	0.301
AW	301	設備機械室	東	0.500	1.62	0.40	0.930	0.372	0.301
				窓ΣA	44.48		窓の日射す	熟取得量(冷房期):	8.003

表 4.2.2-6 mH、η A(暖房期)の算出表

ž.	部位	方位	ν 方位係数	A 面積	U: 熱貫流率	η (U×0.034) 日射熱取得率	ν × A × η日射熱取得量
F	ile live	71 12	7」1立1ボ奴	與假 [m ²]	U: 热貝派平 [W/(m [*] ·K)]	口別級取1守平	口射热取待重 [W/K]
				נייין	[W/(m·K)]		[11/10]
根(開口部面積を除く)		屋根・上面	1.000	96.00	0.254	0.009	0.829
根(ルーフバルコニー)		屋根・上面	1.000	4.00	0.226	0.008	0.031
壁(開口部・パッキン部面	面積を除く)	東	0.568	55.36	0.000	0.000	0.000
		北	0.238	20.83	0.000	0.000	0.000
		西	0.538	42.80	0.000	0.000	0.000
		南	0.983	22.51	0.000	0.000	0.000
壁(開口部・パッキン部配	面積を除く)	東	0.568	36.82	0.000	0.000	0.000
		北	0.238	27.61	0.000	0.000	0.000
		西	0.538	45.72	0.000	0.000	0.000
		南	0.983	15.35	0.000	0.000	0.000
外壁(開口部・パッキン部面積を除く)		東	0.568	0.00	0.000	0.000	0.000
			0.238	6.16	0.000	0.000	0.000
			0.538	0.00	0.000	0.000	0.000
/> ° +> +n/>	45.01.700.00000000	南	0.983	0.00	0.000	0.000	0.000
台パッキン部分	1F CLT90+GW32K100	東 東	0.568	0.18	0.121	0.004	0.000
	外壁①		0.538	0.28	0.121	0.004	0.001
	1E OLT150+++750	南	0.983	0.10	0.121	0.004	0.000
	1F CLT150+ネオマ50 外壁②	東 北	0.568 0.238	0.18 0.13	0.121 0.121	0.004 0.004	0.000
	ファ至仏	<u>北</u> 西	0.238	0.13	0.121	0.004	0.000
		 南	0.538	0.08	0.121	0.004	0.000
	1F CLT90+ネオマ50 外壁③	北	0.983	0.08	0.121	0.004	0.000
口部	玄関ドア	 西	0.238	3.16	4.65	0.004	0.269
- HIT	金物150	-	-	37.58)算出表より→	6.746
	金物150	_	-	6.89	\0 2	, 25m 240.3	0.740
気に接する床	1)	_	0	3.00	-	_	_
気に接する床	2	_	0	9.00	-	_	-
間床等	土間床面積	_	0	88.00	-	_	_
)L字出隅 木熱橋無	金物90	北	0.238	0.4	0.036	0.001	0.000
)L字出隅 木熱橋無	金物90	西	0.538	2	0.036	0.001	0.001
)L字出隅 木熱橋無	金物90	東	0.568	0.2	0.036	0.001	0.000
)L字出隅 木熱橋無	金物150	西	0.538	2.4	0.036	0.001	0.002
)L字入隅 木熱橋無	金物90	北	0.238	0.2	0.036	0.001	0.000
)L字入隅 木熱橋無	金物90	西	0.538	0.6	0.036	0.001	0.000
)L字入隅 木熱橋無	金物90	東	0.568	0.8	0.036	0.001	0.001
)L字入隅 木熱橋無	金物150	西	0.538	0.6	0.036	0.001	0.000
iii)T字 木熱橋無	金物90	北	0.238	0	0.020	0.001	0.000
iii)T字 木熱橋無	金物90	西	0.538	1	0.020	0.001	0.000
iii)T字 木熱橋無	金物90	東	0.568	2.6	0.020	0.001	0.001
iii)T字 木熱橋無	金物90	南	0.983	0.4	0.020	0.001	0.000
iii)T字 木熱橋無	金物150	北	0.238	0.2	0.034	0.001	0.000
iii)T字 木熱橋無	金物150	東	0.568	1	0.034	0.001	0.001
iii)T字 木熱橋無	金物150	南	0.983	0.4	0.034	0.001	0.000
v)L字 木熱橋有	金物90	北	0.238	0.5	0.005	0.000	0.000
v)L字 木熱橋有	金物90	東	0.568	0.8	0.005	0.000	0.000
v)L字 木熱橋有	金物90	南	0.983	0.4	0.005	0.000	0.000
vi)十字 木熱橋有	金物90	北	0.238	0		0.001	0.000
vi)十字 木熱橋有	金物90	南	0.983	0.4		0.001	0.000
vi)十字 木熱橋有	金物150	南	0.983	1	0.060	0.002	0.002
vii)十字 木熱橋有	金物90	北	0.238	0.3	0.051	0.002	0.000
vii)十字 木熱橋有	金物150	<u>北</u> 北	0.238	0.4	0.051	0.002	0.000
viii) アンカー	金物90	<u>北</u> 西	0.238 0.538	0.4	0.497 0.497	0.017 0.017	0.002
viii) アンカー viii) アンカー	金物90						
	金物90	東	0.568	0.4	0.497 0.497	0.017 0.017	0.010
viii) アンカー viii) アンカー	金物90 金物150	<u> </u>	0.983 0.238	0.4	0.497	0.017	0.007
viii) アンカー	金物150	<u>北</u> 西	0.238	0.6	0.497	0.017	0.002
viii) アンカー	金物150	 東	0.568	0.6	0.497	0.017	0.005
viii) アンカー	金物150	 南	0.983	0.6	0.497	0.017	0.010
v)L字 木熱橋有	並初150 CLT90	北	0.983	6.0	0.497	0.017	0.010
v)L字 木熱橋有	CLT90	<u>和</u> 東	0.568	12.0	0.040	0.001	0.002
・/ピューハが個円	CLT90	南	0.983	6.0	0.040	0.001	0.008
v) 字 木埶呑右	CLT90	北	0.238	2.0	0.040	0.000	0.000
v)L字 木熱橋有 vi)十字 木熱橋有		南	0.983	6.0	0.007	0.000	0.000
vi)十字 木熱橋有	CLT90			3.0	0.010	0.000	
vi)十字 木熱橋有 vi)十字 木熱橋有	CLT90 CLT150			5.0	0.000	0.000	0.000
vi)十字 木熱橋有 vi)十字 木熱橋有 vi)十字 木熱橋有	CLT90 CLT150 CLT90	南	0.983 0.238	5.0 5.0	0.000	0.000	0.000
vi)十字 木熱橋有 vi)十字 木熱橋有	CLT150		0.983				

表 4.2.2-7 窓の日射熱取得量(暖房期)の算出表

				νH	A	η	fH	η c(η ×fH)	νΗΧΑΧηΗ
窓種類	窓No.	設置壁	方位	方位係数	面積	日射熱取得率	取得日射量補	日射熱取得率	日射熱取得量
		窓は全て外			[m [*]]	(補正前)	正係数	(補正後)	[W/K]
		壁①に設置)				[-]	[-]	[-]	
W	101 ·	一階廊下	東	0.568	1.47	0.40	0.51	0.204	0.170
WW	103	階段室	西	0.538	0.88	0.40	0.51	0.204	0.097
WW	103	階段室	西	0.538	3.23	0.40	0.51	0.204	0.355
WW	102	廊下	南	0.983	3.47	0.40	0.51	0.204	0.696
WW	102	廊下	南	0.983	0.93	0.40	0.51	0.204	0.187
WW	202	ワークスペース	東	0.568	1.35	0.40	0.51	0.204	0.157
WW	201	ワークスペース	東	0.568	0.81	0.40	0.51	0.204	0.094
W	201	ワークスペース	東	0.568	3.02	0.40	0.51	0.204	0.350
W	206	ホール	東	0.568	0.81	0.40	0.51	0.204	0.094
WW	206	ナール	東	0.568	2.78	0.40	0.51	0.204	0.322
WW	205	ルビング	南	0.983	1.46	0.40	0.51	0.204	0.293
WW	204	リビング	南	0.983	4.73	0.40	0.51	0.204	0.949
W	203	吹抜け	南	0.983	3.77	0.40	0.51	0.204	0.755
WW	203	吹抜け	南	0.983	1.01	0.40	0.51	0.204	0.203
W	303	設備機械室	北	0.238	0.49	0.40	0.51	0.204	0.024
W	303	設備機械室	北	0.238	1.68	0.40	0.51	0.204	0.082
W	302	吹抜け	南	0.983	1.32	0.40	0.51	0.204	0.264
W		吹抜け	南	0.983	4.38	0.40	0.51	0.204	0.878
AW		個室 1	西西	0.538	1.73	0.40	0.51	0.204	0.190
AW			西西	0.538	1.93	0.40	0.51	0.204	0.211
AW		 設備機械室	東	0.568	1.62	0.40	0.51	0.204	0.188
AW		設備機械室	東	0.568	1.62	0.40	0.51	0.204	0.188
				窓ΣA	44.48		窓の日射	熟取得量(暖房期):	6.746

③ 外皮位置および高さ寸法

図 4.2.2-1 外皮位置 屋根

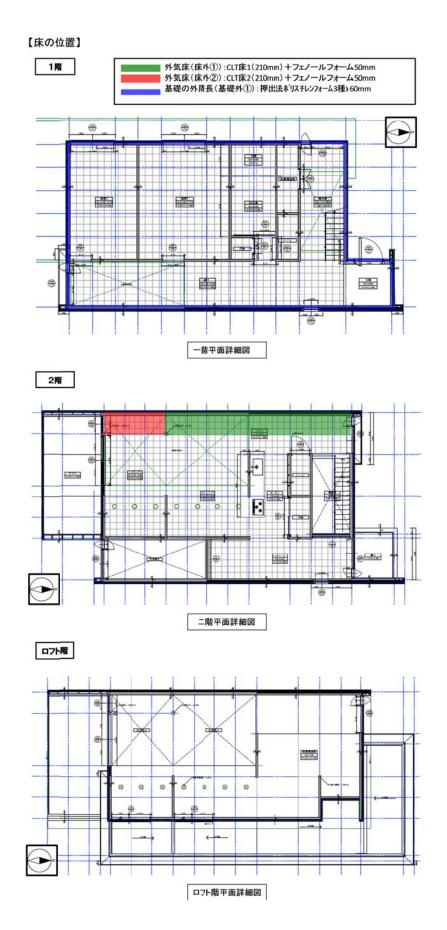


図 4.2.2-2 外皮位置 床

図 4.2.2-3① 外皮位置 外壁

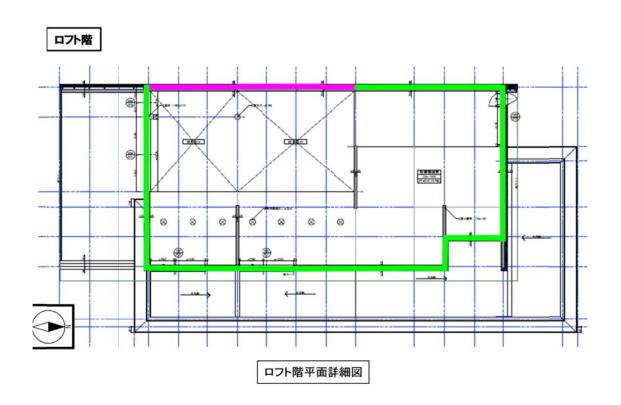


図 4.2.2-3② 外皮位置 外壁

【高さ寸法】

● 高さ寸法

部位	高さ寸法 [mm]
屋根上端	GL+8630
2CL	GL+6470
1CL	GL+3420
基礎天端	GL+315

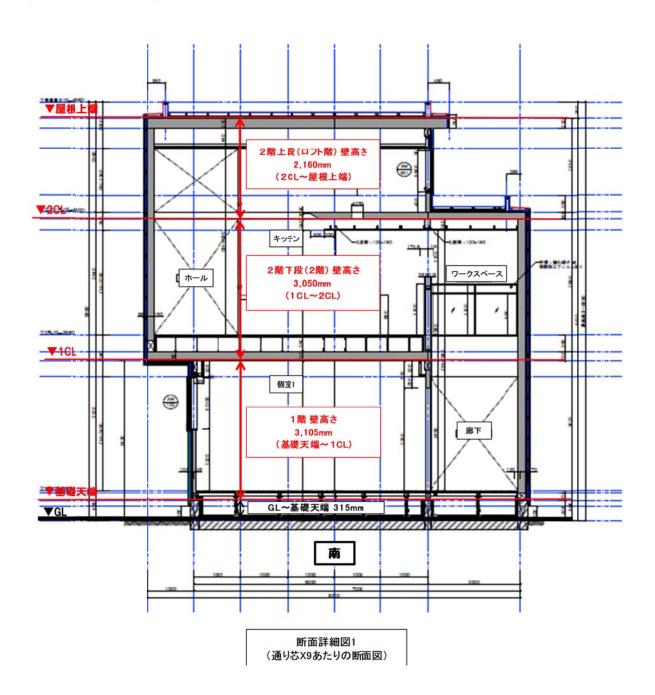


図 4.2.2-4 高さ寸法

④ 接合金物の設置位置

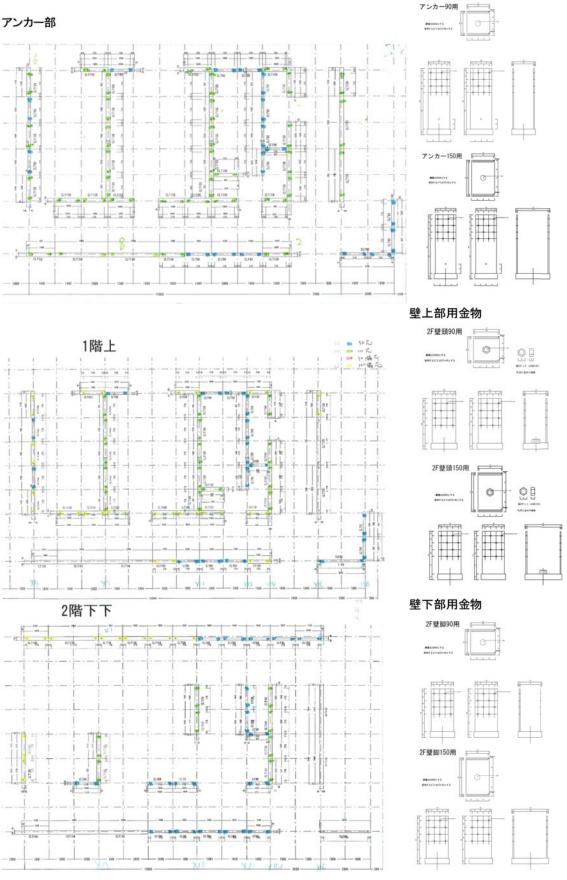


図 4.2.2-5 外皮設置の接合金物-1

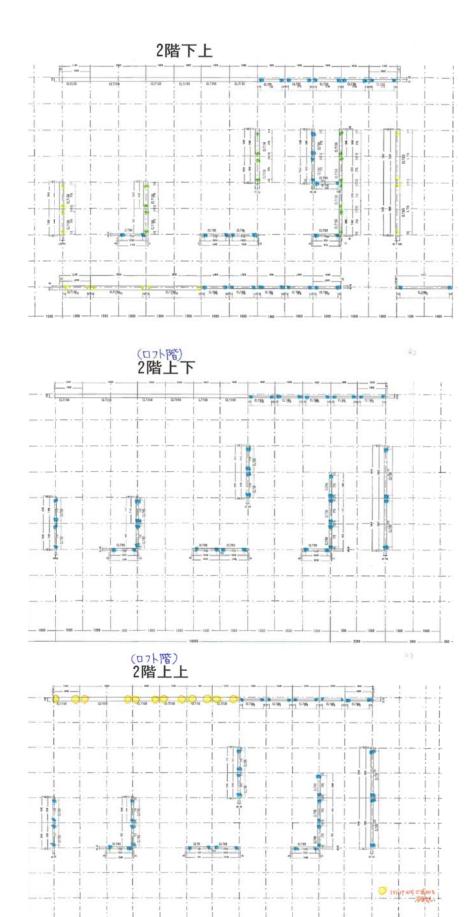


図 4.2.2-6 外皮設置の接合金物-2

⑤ 各部位の熱貫流率

表 4.2.2-8 各部位の熱貫流率

【躯体部】

				断熱仕様			******	
部位		部位呼称	断熱工法 (又は施工 位置)	断熱材名称	熱伝導率(λ)	厚さ(d)	熱貫流率(U)	備考
			匹臣/		[W/(m•K)]	[mm]	[W/(m²·K)]	
P.40		屋根①	外張断熱	フェノールフォーム (CLT150mm)	0.020	50	0.254	-
屋根		屋根②	外張断熱	フェノールフォーム (CLT床1:210mm)	0.020	50	0.226	-
		外壁①1F	外張断熱	グラスウール 32K (CLT90mm)	0.036	100	0.288*	-
外壁		外壁②1F	外張断熱	フェノールフォーム (CLT150mm)	0.020	50	0.269 [*]	-
		外壁③1F	外張断熱	フェノールフォーム (CLT90mm)	0.020	50	0.311*	-
		131F	(パッキンの 外気側)	発泡ウレタン	0.034	100	0.121	土台パッキン 90mm巾
外壁の土台パッキ	> . ₩₽		(パッキンの 室内側)	スタイロフォーム AT (押出法ポリスチレンフォーム保温板 3種b)	0.028	130		
外壁のエコハッキ	・ン部	②1F	(パッキンの 外気側)	発泡ウレタン	0.034	50	0.14	土台パッキン 150mm巾
			(パッキンの 室内側)	スタイロフォーム AT (押出法ポリスチレンフォーム保温板 3種b)	0.028	130		
床	外気床	床外①②	外張断熱	フェノールフォーム (CLT床1:210mm)	0.020	50	0.225	-
土間床(基礎)		基礎外①	内断熱	スタイロフォーム AT (押出法ポリスチレンフォーム保温板 3種b)	0.028	60	0.551	-

[※] 外張り断熱材の熱抵抗に0.9を乗じて計算

【開口部】

部位	部位呼称	建具の仕様/ガラスの仕様/付属部材	熱貫流率(U) [W/(㎡·K)]	日射熱取得率(η) [-]	ガラスの 仕様区分
ドア		CLTパネル(厚 90mm)/ガラスなし ※H25設計施工指針別表第7「木製扉・金属製枠」の値を用いる	4.65	-	-
ato.	窓①	一重構造,木製又はプラスチック製/Low-E 複層ガラス(A10以上)/日射遮蔽型 /附属部材なし	2.33	0.40 [*]	4
窓	窓②	●アルミサッシ:アルジオ(三協アルミ) 一重構造,木又はプラスチックと金属の複合材料製/Low-E 複層ガラス(3-Ar16-Low-E3) /日射遮蔽型/附属部材なし	1.95	0.40**	4

[※] H25省エネ基準 設計施工指針の別表第7(開口部の仕様別熱貫流率と日射熱取得率)より

⑥ 熱橋の種類と位置

表 4.2.2-9 接合部の熱損失一覧

【接合部】

接合タイプと木熱橋有無		金物の	の熱損失	木熱橋部の熱損失	備考
	壁CLT厚	1個当たり	1m当たり(Y)	1m当たり(Ψ)	
	[mm]	[W/K]	[W/m•K]	[W/m•K]	
i)L字出隅 木熱橋無	90	0.0036	0.036	_	※CLT壁150の値を使う
	150	0.0036	0.036	_	
ii)L字入隅 木熱橋無	90	0.0036	0.036	-	i)の値を使う(今回)
	150	0.0036	0.036	_	
iii)T字 木熱橋無	90	0.0020	0.020	_	床(水平)CLT150での試算結果※1
	150	0.0034	0.034	_	床(水平)CLT150での試算結果※1
iv) 通し壁	90	ı	ı	-	ı
(金物・木熱橋無)	150	1	ı	_	ı
v)L字 木熱橋有	90	0.0005	0.005	0.040	屋根CLT210での試算結果
vi)十字 木熱橋有	90	0.003	0.03	0.007	
	150	0.006	0.06	0.013	
vii)十字 木熱橋有	90	0.0051	0.051	0.000	※CLT壁150の値を使う
(水平部外部断熱有)	150	0.0051	0.051	0.000	
viii)アンカー部	90	0.050	0.497	-	※CLT壁150の値を使う
	150	0.050	0.497	-	

^{※)}床CLT厚150mmでの試算。210mmと微差のため150mmの値を適用した。

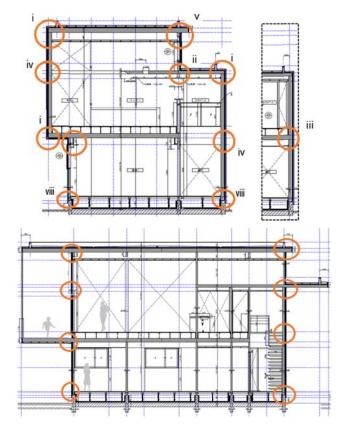


図 4.2.2-7 つくば実験棟 接合金物設置位置

③各部位の熱貫流率

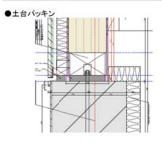
表 4.2.2-10 熱貫流率計算表

【屋根】

屋根①: 最上階 (CLT150+フェ/ールフォー ム50mm) 部分名 面積比 (Ar) 熱伝導率(入) 厚さ(d	部分名		一般部
		1.000	
	熱伝導率(λ)	厚さ(d)	d/λ
熱伝達抵抗 R	2 - 2	-	0.090
CLT150	0.120	150	1.250
フェノールフォーム	0.020	50	2.500
熱伝達抵抗 Ro		_	0.09
熱貫流抵抗 ΣR=Σ	(d/λ)		3.930
熱貫流率 Un=1/	ΣR		0.254
平均熱貫流率 UA= Σ(Un·Ar)			0.254
熱橋係数 βΙ			1,00
実質熱貫流率 U = E	I-UA		0.254

屋根②:下屋部分	部分名		一般部
[CLT床1(210mm)+7t/-ル	面積比 (Ar)		1.000
74-450mm)	熱伝導率()	厚さ(d)	d/λ
熱伝達抵抗 Ri	-		0.090
CLT床1	0.120	210	1.750
フェノールフォーム	0.020	50	2.500
熱伝達抵抗 Ro	-	_	0.09
熱貫流抵抗 ΣR= 2	E(d/λ)		4.430
熱貫流率 Un=1/	ΣR		0.226
平均熱貫流率 UA=		0.226	
熱橋係数 βΙ		1.00	
実質熱貫流率 U =/	3 I·UA		0.226

外壁① 1階 (CLT90+ グラスウール100mm)	部分名		一般部	
	面積比(Ar)		1.000	
	熱伝導率(λ)	厚さ(d)	d/λ	
熱伝達抵抗 R	-	_	0.110	
CLT90	0.120	90	0.750	
グラスウール32K	0.036	90	2,500	
熱伝達抵抗 Ro	11-23		0.11	
熱貫流抵抗 ΣR=	= Σ(d/ λ)		3.470	
熱貫流率 Un=1/ΣR			0.288	
平均熱貫流率 UA=	= Σ (Un·Ar)		0. 288	
熟橋係数 βΙ			1.00	
宝質執貫流率 11 =	= R I · I I A		0.288	


外壁(2)1階	部分名		一般部
(CLT150+	面積比 (Ar))	1.000
フェノールフォーム50mm)	熱伝導率(λ)	厚さ(d)	d/λ
熱伝達抵抗 Ri	-	-	0.110
CLT150	0.120	150	1.250
フェノールフォーム	0.020	45	2.250
熟伝達抵抗 Ro	10-		0.11
熱貫流抵抗 ΣR=	Σ(d/λ)		3.720
熱貫流率 Un=1	/ΣR		0.269
平均熱貫流率 UA=		0. 269	
熱橋係数 βΙ		1.00	
実質熱貫流率 U =	βI·UA		0. 269

外壁(3) 1階	部分名		一般部
(CLT90+7ェノールフォーム)	面積比 (Ar)		1.000
50mm)	熱伝導率(λ)	厚さ(d)	d/λ
熱伝達抵抗 R	-	-	0.110
CLT90	0.120	90	0.750
フェノールフォーム	0.020	45	2.250
熱伝達抵抗 Ro		-	0,11
熱貫流抵抗 ΣR=Σ	(d/λ)		3.220
熱貫流率 Un=1/	ΣR		0.311
平均熱貫流率 UA=Σ(Un·Ar)			0. 311
熱橋係数 βΙ		1.00	
実質熱貫流率 U = E	I-UA		0.311

外壁①	部分名		一般部
1Fに設置分	面積比 (Ar)		1.000
(土台パッキン90)	熱伝導率(λ)	厚さ(d)	d/λ
熱伝達抵抗 R		-	0.110
ポリプロピレン	0.190	90	0.474
発泡ウレタン	0.034	100	2.941
押出発泡ボリスチレン3種	0.028	130	4.643
熱伝達抵抗 Ro	1,1—3	177	0.11
熱貫流抵抗 ΣR=Σ	(d/λ)		8.278
熱貫流率 Un=1/		0.121	
平均熱貫流率 UA= Σ(Un·Ar)			0. 121
熱橋係数 βΙ		1.00	
実質熱貫流率 U = /		0. 121	

外壁②	部分名		一般部
1FIC設置分 面	面積比 (Ar)		1.000
(土台パッキン150)	熱伝導率(λ)	厚さ(d)	d/λ
熟伝達抵抗 Ri	i -	- 1	0.110
ポリプロビレン	0.190	150	0.789
発泡ウレタン	0.034	50	1.471
押出発泡ボリスチレン3種	0.028	130	4.643
熱伝達抵抗 Ro			0.11
熱貫流抵抗 ΣR=Σ	(d/λ)		7.123
熱貫流率 Un=1/	ΣR		0.140
平均熱貫流率 UA=Σ(Un·Ar)			0.14
熱橋係数 βΙ			1.00
実質熱貫流率 U = β	I-UA		0.14

外壁③	部分名		一般部
1Fに設置分	面積比 (Ar)		1.000
(土台パッキン90)	熱伝導率(λ)	厚さ(d)	d/λ
熱伝達抵抗 R	_		0.110
ポリプロピレン	0.190	90	0.474
発泡ウレタン	0.034	100	2.941
押出発泡ボリスチレン3種	0.028	130	4.643
熱伝達抵抗 Ro	1-1	-	0.11
熱貫流抵抗 ΣR= Σ	(d/λ)		8.278
熱貫流率 Un=1/	ΣR		0.121
平均熱貫流率 UA=		0.121	
熱橋係数 βΙ	橋係数 βΙ		
実質熱貫流率 U = /	31-UA		0.121

【床】			
床外① 床外②	部分名		一般部
(CLT床1+フェノールフォー	面積比(Ar)		1.000
Д50mm)	熱伝導率(λ)	厚さ(d)	d/ λ
熱伝達抵抗 Ri	-	_	0.150
CLT床1	0.120	210	1.750
フェノールフォーム	0.020	50	2.500
熱伝達抵抗 Ro	_	_	0.040
熱貫流抵抗 ΣR=Σ	(d/λ)		4.440
熱貫流率 Un=1/	ΣR		0.225
平均熱貫流率 UA= X	(Un·Ar)		0.225
熱橋係数 βΙ			1.00
実質執貫流率 U = f	RI-UA		0.225

【土間床(基礎)】

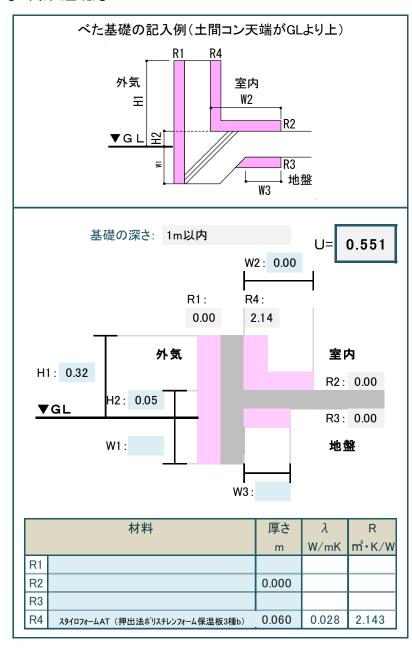


図 4.2.2-8 基礎仕様図

⑧CLT 接合金物部の熱損失値計算

壁 CLT と床 CLT の取り合い部,壁 CLT と基礎部に金物熱橋がある場合の金物熱橋と木熱橋による熱損失を以下の手順で算出した。

■計算条件

- ・INSYS (2次元伝熱・結露計算システム Ver. 2) による 2次元解析を行った。
- ・床とその上下の壁 2 枚 (上下とも CLT150 または上下とも CLT90), 基礎と壁に構成された構造体を対象とする。
- ・金物の熱伝導率は 55W/m・K、内外温度差は 20℃ ・金物 ss400 の熱伝導率として, 評価協の鋼 (55W/m・K) の値を採用した。
- ・床高さが2種類あり、150mmと210mmの両方の検討を行った。
- ・CLT150(厚 150mm)にはネオマフォーム (0.020W/m・K) 厚 50mm の断熱材仕様
- ・CLT90(厚 90mm)にはグラスウール 32K (0.036W/m・K) 厚 100mm の断熱材仕様

計算手順

Step1:金物熱橋(一部木熱橋も)がある壁体モデルを対象に貫流熱損失を求める。

Step2:金物熱橋(同上)、床CLTが無いものとして貫流熱損失を求める。

Step3: Step2 の貫流熱損失から Step1 の貫流熱損失の差が、金物熱橋(同)の影響によって生じる貫流 熱損失となる。

Step4:金物1個あたりの貫流熱損失は、金物箇所数で割ったのち、金物の幅(W)[m]で乗じる。

接合タイプ(i)L字出隅 木熱橋無

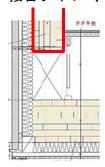


図 4.2.2-9 L 字出隅

表 4.2.2-11: L型熱橋における金物熱橋と木熱橋による熱損失

					壁面モデ	ル(L型)			計算結果				Step4	
				Ħ	会			断熱材				熟流差/20℃		×0.1m(金物幅)
計算 ケース	構造体 タイプ	熱橋	CLT金物	壁CLT厚 [mm]	水平CLT厚 [mm]	断熱材 種類	断熱材厚 〔mm〕	熱伝導率	熱流量	熱流差	(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				ÇIIIII)	ÇIIIII)			[W/m•K]	[W/m]	(W.	/m)	[W/m·K]	[W/m·K]	(W/K)
1	L型	金物	金物1個					Ste	p1 1,285	Step2				
2	L쪼	並彻	金物無し	150	010	++ <i>I</i>		0.00	10.561	①-②	0.724	0.036	0.036	0.0036
3	壁	金物	金物無し	150	210	ネオマフォーム	50	0.02	10.609	0-3	0.676	0.034	0.034	0.0034

接合タイプ(ii) L字入隅 木熱橋無

図 4.2.2-10 L 字入隅

接合タイプ(i)と同様とみなし、表1の値を適用

接合タイプ (iii) T字 木熱橋無 床 CLT 厚 150mm

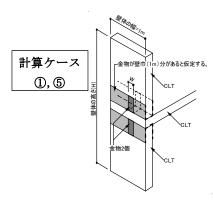


図 4.2.2-11 T字 床 CLT 厚 150mm

表 4.2.2-12 T型熱橋における金物熱橋と木熱橋による熱損失

	·		壁面	iモデル <mark>(T</mark>	型) 床	150mm			計算結果				Step4	
				接	合			断熱材				熱流差/20℃	1)/2, 4)/2	×0.1m(金物幅)
計算 ケース	構造体 タイプ	熱橋	CLT金物	壁CLT厚 [mm]	床CLT厚 [mm]	断熱材 種類	断熱材厚 〔mm〕	熱伝導率	熱流量	熱流差	(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				LIIIII)	לוווווו			[W/m·K]	[W/m]	(W)	/m]	[W/m·K]	[W/m•K]	(W/K)
0	T型	金物	金物2個					C+c	p1 11.829	①-3	1.348	0.067	0.034	0.0034
2	132	土木	金物1個	150	150	ネオマフォーム	50	0.02	11 163	2 -3	0.682	0.034	0.034	0.0034
3	壁	ተ	金物無し							Step2				
0			金物2個					C+	p1 11.829	①-4	1.388	0.069	0.035	0.0035
2	T型	金物	金物1個	150	150	ネオマフォーム	50	0.02	11 163	2-4	0.722	0.036	0.036	0.0036
4			金物無し						10.441					
5	T型	金物	金物2個			グラスウール		Ste	12.098	4 -6	0.757	0.038	0.019	0.0019
6	135	亚彻 十木	金物1個	90	150	32K	100	0.036	11.708	⑤ - ⑥	0.367	0.018	0.018	0.0018
7	壁	T小	金物無し			JZK			11.341	Step2				
5			金物2個			グラスウール		Ste	12.098	4 -7	0.794	0.040	0.020	0.0020
6	T型	金物	金物1個	90	150	32K	100	0.036	11.708	<u> 5-7</u>	0.404	0.020	0.020	0.0020
8			金物無し			32N			11.304					

接合タイプ (iii) T字 木熱橋無 床 CLT 厚 210mm

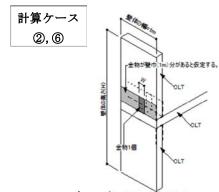


図 4.2.2-12 T字 床 CLT 厚 210mm

表 4.2.2-13 T型熱橋における金物熱橋と木熱橋による熱損失

			重量	iモデル(T	型)床	高210mm			計算結果				Step4	
				接	合			断熱材				熟流差/20℃	1)/2, 4)/2	×0.1m(金物幅)
計算 ケース	構造体 タイプ	熱橋	CLT金物	壁CLT厚 [mm]	床CLT厚 〔mm〕	断熱材 種類	断熱材厚 〔mm〕	熱伝導率	熱流量	熱流差(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				LIIIIIJ	CIIIII)			[W/m·K]	[W/m]	(W)	/m)	[W/m•K]	[W/m·K]	[W/K]
1	T型	金物	金物2個	_				St		①-③	1.363	0.068	0.034	0.0034
2	_	平板 十木	金物1個	150	210	ネオマフォーム	50	0.02	11.438	2 -3	0.664	0.033	0.033	0.0033
3	壁	ТФ	金物無し							Step2				
0			金物2個	_				St		1 - 4	1.439	0.072	0.036	0.0036
2	T型	金物	金物1個	150	210	ネオマフォーム	50	0.02	11.438	2 - 4	0.740	0.037	0.037	0.0037
4			金物無し						10.698					
5	T型	金物	金物2個			グラスウール		Ste	12.399	4 -6	0.741	0.037	0.019	0.0019
6	1.7	平木	金物1個	90	210	32K	100	0.036	11.993	⑤ - ⑥	0.335	0.017	0.017	0.0017
7	量	⊤∧	金物無し			JZN			11.658	Step2				
5			金物2個			グラスウール		C+	12.399	4 -7	0.821	0.041	0.021	0.0021
6	T型	金物	金物1個	90	210	クラス・ソール 32K	100	0.036	11.993	⑤ -⑦	0.415	0.021	0.021	0.0021
8			金物無し			υZN			11.578					

接合タイプ(iv)通し壁部

金物設置無し 木熱橋無

接合タイプ(V)L字出隅 木熱橋有

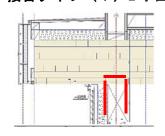


図 4.2.2-13 L字出隅 木熱橋有り

表 4.2.2-14 L型熱橋における金物熱橋と木熱橋による熱損失

					壁面モデル	レ(L型)			計算結果				Step4	
				持	合			断熱材				熟流差/20℃		×0.1m(金物幅)
計算 ケース	構造体 タイプ	熱橋	CLT金物	壁CLT厚	水平CLT厚 [mm]	断熱材 種類	断熱材厚 〔mm〕	熱伝導率	熱流量	熱流差	(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				LmmJ	CIIII			[W/m·K]	[W/m]	(W.	/m)	(W/m·K)	[W/m·K]	(W/K)
0	L型	金物	金物1個					Ste	p1 12.230	Step2				
2	ഥ	亚彻	金物無し	90	210	ネオマフォーム	50	0.02	12.123	①-②	0.107	0.005	0.005	0.0005
3	壁	金物木	金物無し	90	210	<i>↑</i> // <i>₹</i> /// Δ	50	0.02	11.328	0-3	0.902	0.045	0.045	0.0045

接合タイプ (vi) (十字 木熱橋有)

図 4.2.2-14 十字

表 4.2.2-15 +型熱橋における金物熱橋と木熱橋による熱損失

					壁面モデ	ル(+型)			計算結果				Step4	
				接台				MC 赤か ++				熱流差/20℃	①/2	×0.1m(金物幅)
計算 ケース	構造体 タイプ	熱橋	CLT金物	水平CLT厚		断熱材 種類	断熱材厚 〔mm〕	断熱材 熱伝導率	熱流量	熱流差	(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				LmmJ	[mm]			[W/m•K]	[W/m]	(W)	/m]	[W/m•K]	[W/m•K]	(W/K)
0	+型	金物	金物2個					Ste	p1 13.588	Step2				
2	792	亚彻	金物無し	210	90	グラスウール	100	0.036	12.380	①-②	1.208	0.060	0.030	0.0030
3	壁	金物 +木	金物無し	210	90	32K	100	0.030	12.100	D-3 Step2	1.488	0.074	0.037	0.0037
1	+型	金物	金物2個					Ste	p1 13,993					
2	∓ ⊈	並彻	金物無し	010	150	ネオマフォーム	E0.	0.00	11.606	0-2	2.387	0.119	0.060	0.0060
3	壁	金物 +木	金物無し	210	150	*\(\frac{1}{2}\)	50	0.02	11.073	10-3	2.921	0.146	0.073	0.0073

接合タイプ (vii) (十字 木熱橋有)

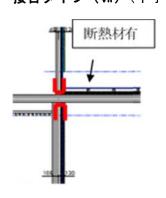


図 4.2.2-15 十字 木熱橋有り

表 4.2.2-16 +型熱橋(水平部外部断熱有)における金物熱橋と木熱橋による熱損失

					壁面モデ	ル(+型)			計算結果				Step4	
				接台	<u> </u>			断熱材				熟流差/20℃	①/2	×0.1m(金物幅)
計算ケース	構造体 タイプ	熱橋	CLT金物	水平CLT厚	/ \	断熱材 種類	断熱材厚 〔mm〕	熱伝導率	熱流量	熟流差	(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
				[mm]	LmmJ			[W/m•K]	[W/m]	(W.	/m]	[W/m•K]	[W/m·K]	(W/K)
1	+型	金物	金物2個					Ste	p1 13.124	Step2				
2	792	亚彻	金物無し	150	150	ネオマフォーム	50	0.02	11.083	①-2	2.041	0.102	0.051	0.0051
3	壁	金物 +木	金物無し	150	190	47 Y 78 - A	50	0.02	11.073	①-3	2.052	0.103	0.051	0.0051

接合タイプ(viii)アンカー部

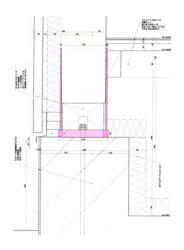


図 4.2.2-16 アンカー部

表 4.2.2-17 アンカー部熱橋における金物熱橋とコンクリート熱橋による熱損失

					基礎モデル			計算結果		熱流差/20℃	Step4	×0.1m(金物幅)
計算ケース	構造体タイプ	熱橋	CLT金物	壁CLT厚 〔mm〕	断熱材種類	断熱材厚 〔mm〕	断熱材 熱伝導率	熱流量	熟流差(Step3)	金物1mあたり 線熱貫流率	金物1mあたり 線熱貫流率	金物1つあたり 熱貫流損失
							(W/m•K)	[W/m]	[W/m]	[W/m•K]	[W/m•K]	(W/K)
1	基礎	金物	金物1個	150	ナ 井フフェー/	EO	Ste	p1 8.946	① -② 9.936	0.497	0.497	0.0497
2	本能	立彻	金物無し	100	ネオマフォーム	50	0.02	9.010	Step2			

■計算結果まとめ

表 4.2.2-18 つくば実験棟_線熱貫流率φと熱損失 HB の値

構造体	壁CLT厚	金物ψ	НВ	木+金物ψ	НВ	No.
特坦神	(mm)	[W/m·K]	(W/K)	(W/m·K)	(W/K)	IWO.
T 44	90	0.021	0.0021	0.019	0.0019	(iii)
T型	150	0.037	0.0037	0.034	0.0034	(iii)
1 74	90	0.005	0.0005	0.045	0.0045	(v)
L型	150	0.036	0.0036	0.034	0.0034	(i)
+型	90	0.03	0.0030	0.037	0.0037	(vi)
十 坐	150	0.051	0.0051	0.051	0.0051	(vii)
7\.+ #	90	0.497	0.0497			
アンカー部	150	0.497	0.0497			(viii)

今後の検討

- ・CLT標準壁厚、床厚での金物 熱橋の値
- ・金物仕様ごとの値

温度コンター図

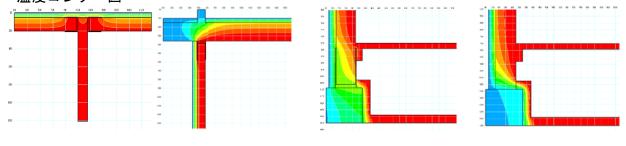
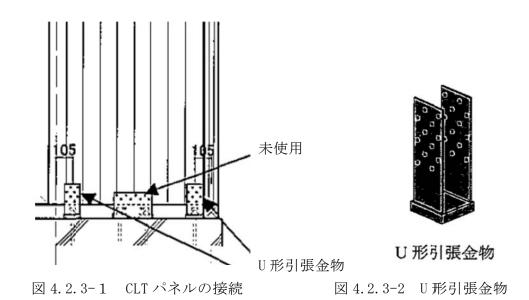



図 4. 2. 2-17 壁面 T 型_金物有 図 4. 2. 2-18 壁面 L 型_金物有 図 4. 2. 2-19 基礎部_金物有 図 4. 2. 2-20 基礎部_金物無

4.2.3 つくば実験棟の結露センサー設置

つくば実験棟は、U字形のU形引張金物を用いて、接続する工法である。ここで用いられるU形引張金物は、CLTパネルを挟んで、外気側と室内側を貫通することになる。従って、その影響を把握するため、竣工後、実建物の金物の結露発生の有無を確認するためのセンサー設置を行った。

設置位置

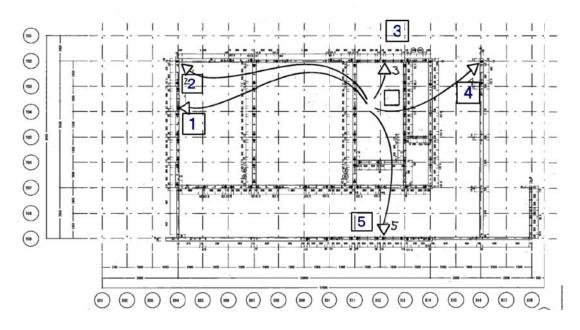


図 4.2.3-3 結露センサー設置位置

図 4.2.3-3 の、 1 から 5 の、U 形引張金物の室内側に結露センサーを湿気の妨げとならないよう、透湿防水シートで取り付けた。

また、 1 については、U 形引張金物の外気側と室内側表面温度、及び CLT パネルの外気側と室内側表面温度測定のため、T 型熱電対も設置した。

図 4.2.3-4 1 部熱電対①

図 4.2.3-5 1 部熱電対②

図 4.2.3-6 1 部 (断熱材復元)

図 4.2.3-7 結露センサー①-1

図 4.2.3-8 結露センサー①-2

図 4.2.3-9 1 部室内側センサー

図 4.2.3-10 1 部室内側センサー

図 4.2.3-11 熱電対④

図 4.2.3-12 結露センサー②

図 4.2.3-13 結露センサー③

図 4.2.3-14 3 部室内側センサー

図 4.2.3-15 結露センサー④

図 4.2.3-16 4 部室内側センサー

図 4.2.3-17 結露センサー⑤

図 4.2.3-18 5 部室内側センサー

4.2.4 実物件の温熱測定内容および情報収集等

近年 CLT を用いた建造物が、全国各地で建設や提案・計画が進められている。これらの建造物は、用途・規模・接合方法等それぞれ異なっており、その多くは木造軸組等 他構法との複合構造となっている。本項では、CLT を構造体として用いた建造物 9 棟における温熱環境に関する測定内容 及び 断熱仕様について 情報を表 4.2.4-1~表 4.2.4-9 にまとめた。

9棟はCLTを主構造としているが、建設地、断熱材の材質・性能値、内断熱か外断熱か、熱橋に影響する接合金物の仕様、居住者の有無等、温熱環境の条件は異なっている。納まり図や仕様書等、詳細を確認しないと比較検討する上で、注意する点は多々あるが、今後収集される測定データは、CLTを用いた建設計画の参考となる。

表 4.2.4-1 物件調査情報 ①

3. 気密測定 C値 有 気密測定器KNS-4000 II型/コーナー札幌 4. 結構(壁内) 無 5. 含水測定(CLT躯体等) 有 含水率計による計測 6. エネルギー消費量 無 7. 主たる居室の暖房方式 エアコン 8. 主たる居室の冷房方式 エアコン 9. 給湯方式 ガス給湯器 10. その他()) 2. 仕 様 節位 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様が である である である である である である である である である である	有無 別上機器の性類 等 計別の内容 計別値所(部位) 時報 別上機器の性類 等 計別の内容 計別値所(部位) 時報 計別値所(部位) 時報 計別値所(部位) 日本 日本 日本 日本 日本 日本 日本 日	
1. 温度測定 空間温度度 有 おんんととり 各戸1室(洋室) +外部 時間おき3年間 日本 日本 日本 日本 日本 日本 日本 日	1. 温度測定 有 おんんどとり 各戸1室(洋室) +外部 1時間おき3年間 名の他、7 A値 (〇値、µ値) 有 気密測定器KNS-4000 II 型/コーナー札幌 日本	
空間温湿度 有 おんんどとり 各戸1室(洋室) +外部 時間約53年間 2. UA値、η A値(Q値、μ値) 有 気密測定器KNS-4000 II 型/コーナー札幌	空間温湿度 有 おんんどとり 各戸1室(洋室) +外部 時間おき3年間 2. UA値、7 A値(Q値、μ値) 有 気密測定器KNS-4000 II 型/コーナー札幌	
3. 気密測定 C値 有 気密測定器KNS-4000 II型/コーナー札幌 4. 結構(壁内) 無 5. 含水測定(CLT躯体等) 有 含水率計による計測 6. エネルギー消費量 無 7. 主たる居室の暖房方式 エアコン 8. 主たる居室の冷房方式 エアコン 9. 給湯方式 ガス給湯器 10. その他()) 2. 仕 様 節位 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様が である である である である である である である である である である	3. 気密測定 C値 有 気密測定器KNS-4000 II型/コーナー札幌	
4. 結構 (### A ** ** ** ** ** ** ** ** ** ** ** ** *	
5. 含水測定(CLT躯体等) 有 含水率計による計測 メーターボックス内 3回/月-3年間 6. エネルギー消費量 無 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5. 含水測定(CLT躯体等) 有 含水率計による計測 メーターボックス内 3回/月-3年間 6. エネルギー消費量 無 アコン	
6. エネルギー消費量 無	6. エネルギー消費量 無	
7. 主たる居室の暖房方式 エアコン	7. 主たる居室の暖房方式 エアコン	
8. 主たる居室の冷房方式 エアコン ガス給湯器 ガス給湯器 ガス給湯器 ガス給湯器 ガス 株	8. 主たる居室の冷房方式 エアコン ガス給湯器 ガス給湯器 ガス給湯器	
9. 給湯方式 ガス給湯器 10. その他())) 2. 仕 様 断熱材 仕様 部 位 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様内 屋根 グラスウール16K 150 外壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 開口部 窓 アルミ 複層ガラス	9. 給湯方式 ガス給湯器 ガス給湯器 ガス給湯器 ガス給湯器 ガス給湯器 10. その他() 2. 仕 様	
10. その他(2. 仕 様 屋根 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様内 グラスウールI6K 150 180 外壁 内壁 グラスウールI6K 外壁 グラスウールI6K 50 150 150 分別・サイン・サイン・サイン・サイン・サイン・サイン・サイン・サイン・サイン・サイン	10. その他()) 10. その他()) 2. 仕 様 第 位 断熱材の種類 厚み 性能値 CLTの厚み その他の付置根 グラスウール16K 150 180 内壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	
2. 仕様 断熱材 仕様 CLTの仕様 部 位 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様の 屋根 グラスウール16K 150 180 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 開口部 窓 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	2. 仕様 ERROR (LTO) (LTO	
## 位 断熱材の種類 厚み 性能値 CLTの厚み その他の仕様内を関する。	部 位 断熱材 仕様 CLTの仕様 断熱材の種類 厚み 性能値 CLTの厚み その他の付金 屋根 グラスウール16K 150 180 外壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	
## 14	所能材の種類 厚み 性能値 CLTの厚み その他の付置 屋根 グラスウール16K 150 180 外壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	
財務材の種類 序み 性能値 GL1の序み その他の仕様区 屋根 グラスウール16K 150 180 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 房口部 窓 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	対象性の性類 序が 性能値 GL1の序が その他の	1 144 -14
内壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 開口部 窓 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	内壁 グラスウール16K 50 150 外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	1棟内名
外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 開口部 窓 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	
外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180 最下階床 ネオマホーム 45 - 際 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	外壁 グラスウール16K 50 150 各界床 グラスウール16K 50 180	
最下階床 ネオマホーム 45		
窓 アルミ 複層ガラス ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	最下階床 ネオマホーム 45 -	
開口部 ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等		
ドア 金属製断熱ドア(玄関) 防火戸F型K4仕様 3. 指導を頂いている先生等	窓アルミ 複層ガラス	
	3. 指導を頂いている先生等	
	4. 受託事業先 及び 発注先	

表 4.2.4-2 物件調査情報 ②

Ī	†測の項目	測定の 有無		- 測定機器の種類 等 計	測の内容	計測個所(部位)	計測スケジュール 時季
	表面温度	無					
1. 温度測定	空間温湿度	有	おんどとりによるデ	一 タ 一 取		外部・内部各室・床下	1時間おき3年間
2. U _A 値、η A	値(Q値、μ値)	有					
3. 気密測定	C値	有	気密測定器KNS-4	000 Ⅱ 型/コーナー札幌		103、201、101、201、 303+建設中1室	建設中1回竣工時1回
4. 結露(壁内	3)	無					
5. 含水測定	(CLT躯体等)	有	含水率計による計	則		メーターボックス内	3回/月一3年間
6. エネルギー	-消費量	無		,			
7. 主たる居	室の暖房方式		エアコン				
8. 主たる居	室の冷房方式		エアコン				
9. 給湯方式			ガス給湯器				
10. その他()		-			
2. 仕 様							
	÷n /-			断熱材 仕様		С	LTの仕様
	部 位	断	熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容
屋根(天井面)	グラ	5スウール16K	150		180	
外壁	内壁	グラ	5スウール16K	50		150	
71至	外壁	グラ	ラスウール16K	50		150	
各界床		グラ	ラスウール16K	50		180	
最下階床	•	7	オマホーム	45		-	
開口部	窓		アルミ	複層ガラス			
베니마	ドア	金属製	断熱ドア(玄関)		防火戸F型K4仕様		

表 4.2.4-3 物件調査情報 ③

1. 温熱測定 計	測の項目	測定の 有無		測定機器の種類 等 計	測の内容	計測個所(部位)	計測スケジュール時季
1. 温度測定	表面温度	0	使用機器:おんどと	りTR-72S(接触センサー)		外壁表面温度(1点) 内壁表面温度(1点)	測定期間:H27/8.11~8/3 自記記録間隔:10分間隔
	空間温湿度	0	使用機器:おんどと	りTR-72S(標準センサー)		2階室内温湿度(上中下各1点) 1階室内温湿度(1点)	同上
	壁体内温度	0	使用機器:おんどと	:りTR-72S(接触センサー)		外壁構成部材間温度(計 2点) 外壁パネルー断熱材間、 断熱材-CLT間	同上
2. U _A 値、η A	値(Q値、μ値)	Δ					今年度中には実施したい1
3. 気密測定		Δ					今年度中には実施したい1
4. 結露(壁内		_					
5. 含水測定(-					
6. エネルギー	-消費量	_					
7. 主たる居室	≧の暖房方式	_					
8. 主たる居室	図の冷房方式	_					
9. 給湯方式		-					
	風量測定)	0	24時間換気 機器	吹出し風速測定(強、弱)および	次出し口面積測定	2階ロスナイ	H27.8.11(1回) H27,8.21(1回) 計2回
2. 仕 様							
				断熱材 仕様		C	LTの仕様
	部 位	断	熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容
屋根			硬質ウレタンフォーム 温版2種1号	100mm		210mm	断熱防水
外壁	内壁		- (表し)	-	_	150mm	外断熱
/1-2	外壁		DAN <u>壁</u>	100mm	0.040 W/mk(カタログ値)		
各界床			なし			210mm	
最下階床			出ポリスチレンフォーム 呆温版3種b	土間コン下 100mm		_	外断熱
開口部	窓	7	木製サッシ				
用口司	ドア	住9	宅用玄関ドア				
3. 指導を頂い	ている先生等						

表 4.2.4-4 物件調査情報 ④

	湯川村CLT#	・同任	<u> </u>	竣工時期:201	5年 2月((済み)・予定	建設地 :福島県	;
1. <u>温熱測定</u> 計	別の項目	測定の 有無		測定機器の種類 等 計	』の内容	計測個所(部位)	計測スケジュール時季
1. 温度測定	表面温度	0				CLT表面、金物表面(室 内側のみ)	3年間計測予定
1. 血及炽炬	空間温湿度	0	温湿度計により、各	·部位の温湿度測定		1階床下、2階床下、小屋	3年間計測予定
2. Ua値、η a	値(Q値、μ値)	0	設計時算出、竣工行	後Q値測定		住戸全体	_
3. 気密測定 C値			LLた方法で測定		住戸全体	-	
			1.温度測定(表面温	温度)に加え、室内側の相対湿度	[測定	1.の室内側測定個所近 傍	3年間計測予定
5. 含水測定(CLT躯体等) O CLT躯			CLT躯体各部位の	含水率測定		1.の室内側測定個所近 傍、2階床下、小屋裏	3年間計測予定
6. エネルギー消費量 O			電力			1住戸あたり	3年間計測予定
7. 主たる居室	医の暖房方式	_	エアコン				
8. 主たる居室	医の冷房方式	-	エアコン				
9. 給湯方式		-	ガス給湯器	エコキュート			
10. その他(クリープ)	0	変位計により、各部	『位のクリープ測定		2階床パネルおよび屋根パネ ルの床中央、壁取り合い部	3年間計測予定
2. 仕 様							
±= //			断熱材 仕様			CI	LTの仕様
	部 位	断	熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容
屋根			棟:ネオマフォーム リーンファイバー60kg/m2	A棟:80mm B棟:180mm	A棟:0.02(W/m·K) B棟:0.037(W/m·K)	180mm	A棟:外張り断熱 B棟:充垣断熱
LI 0*	内壁		なし	-	-	150mm	せっこうボード二重貼り
外壁	外壁		ックウール断熱材(ボード) リーンファイバー60kg/m2	A棟:100mm B棟:100mm	A棟:0.036(W/m·K) B棟:0.037(W/m·K)	150mm	A棟:外張り断熱 B棟:充填断熱
各界床			グリーンファイバー 60kg/m2	B棟:60mm	B棟:0.037(W/m·K)	180mm	CLT(置き床・二重天井)
最下階床		ネ	オマフォーム	45mm	0.02(W/m·K)	_	木床組み
	窓	金属・プラ	スチック複合サッシ	普通複層(A12mm)	3.49 (W/m2·K)	-	-
開口部	ドア		-	-	_	-	-
3. 指導を頂い	ている先生等						
芝浦工業大学	工学部建築工学科	秋元孝之	教授				
	た 及び 発注先						
受	託事業先	福島県C	LT推進協議会	(会津土建株式会社)	発注元	福島県	

表 4.2.4-5 物件調査情報 ⑤

			断熱材 仕様	 CLTの仕様		
	部 位	断熱材の種類	関系が 江塚 厚み	性能値		
		押出発泡ポリスチレンフォーム3種b	65mm	2.70m2/K/W	OL100序07	その他の仕様内容 内張り断熱
	内壁				90mm × 2	CLT現し
外壁	外壁	高性能グラスウール14kg/m2	105mm	2.80m2/K/W	90mm 150mm	外張り断熱+通気層あり(CLT) ※構造用合板+石膏ボードを
各界床					150mm	CLT(2重床・天井) ※在来床組みを含む
最下階床		押出発泡ポリスチレンフォーム3種b	50mm	2.00m2/K/W		コンクリート打ちっぱなし
開口部	窓	複層ガラス	空気層6mm	4.00W/m2K		_
洲山即	ドア	特になし	=	-		_
	いている先生等					
東京大学生	産技術研究所 腰	原教授、早稲田大学 安井客員研	究員			

表 4.2.4-6 物件調査情報 ⑥

2. 仕 様						
	部 位		断熱材 仕様	C	CLTの仕様	
	th in	断熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容
屋根		ロックウール(天井)	9mm		天井180mm	両面石膏ボード、グラスウー
外壁	内壁				90mm	せっこうボード両面貼り
外壁	外壁	ポリスチレンフォーム	25mm		90mm 外引	外張り断熱+通気層あり
					180mm	CLT(2重床·天井)
最下階床		ポリスチレンフォーム	50mm			在来床組み
開口部	窓	複層ガラス				_
用口印	ドア					_
3. 指導を頂し	っている先生等					
工学院大学	河合教授					
	先 及び 発注先 受託事業先	補助金: 林野庁		発注元	高知県庁	

表 4.2.4-7 物件調査情報 ⑦

		問組合 事務所棟	竣工時期: 2	2016年1月(済み・予定)	建設地 : 高知県	土佐河	
2. 仕 様			断熱材 仕様			CLTの仕様	
	部 位	断熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容	
屋根		高性能グラスウール	105mm	断熱材単体: 0.035(W/m·K) 部位別複合: 0.44(W/m2·K)		内張り断熱	
LJ 8*	内壁				90mm	CLT現し	
外壁	外壁	フェノールフォーム	20mm	断熱材単体: 0.022(W/m·K) 部位別複合: 0.41(W/m2·K)	CLTの厚み	柱間断熱+通気層あり	
各界床					180mm	ALC36mm、天井GW t =	
最下階床		フェノールフォーム	20mm	断熱材単体: 0.022(W/m·K) 部位別複合: 0.82(W/m2·K)	鋼製2重床(基礎断		
開口部	窓	アルミサッシ	Low-E複層(A6mm)	部位別複合:4.07(W/m2·K)		ガラスは断熱タイプ	
HI III III	ドア	アルミサッシ	Low-E複層(A6mm)	部位別複合:4.07(W/m2·K)		ガラスは断熱タイプ	
3. 指導を頂	いている先生等						
東京大学生	産技術研究所 腰原	教授				•	
4. 受託事業	先 及び 発注先			•			
	受託事業先	補助金: 林野庁		発注元	窪津漁協協同組合		

表 4.2.4-8 物件調査情報 ⑧

2. 仕 様			断熱材 仕様 C			
	部 位	部 位		CLTの厚み	その他の仕様内容	
屋根		天井:グラスウール	155mm			天井断熱
外壁	内壁	グラスウール	50mm × 2		90mm	せっこうボード片面貼り
介堂	外壁	グラスウール	100mm		90mm	外張り断熱+通気層あり
各界床		セルロースファイバー	150mm		150mm	CLT(セルロースファイバー
最下階床		フェノールフォーム	50mm			在来床組み
開口部	窓	複層ガラス				_
用口印	ドア					_
3 歩道を頂	リングリンス失生等					
3. 指導を頂	いている先生等					

表 4.2.4-9 物件調査情報 ⑨

	高知おおとよ	- 25t 171 T.L	貝尔	竣工時期:201	4年3月((済み)・予定	建設地 : 高知県	長岡郡大
1. 温熱測定		測定の		POLICE IN DR TOUT ME SILV			計測スケジュール
āt	測の項目 I	有無		測定機器の種類 等 計	則の内容	計測個所(部位)	時季
1. 温度測定	表面温度	無					
	空間温湿度	無					
2. U _A 値、η _A f	直(Q値、μ値)	無					
3. 気密測定(C値	有	減圧測定法 1F(4	4cm2/m2) 2, 3F(3cm2/m2)		1F、2F,3Fリビング	3月
4. 結露(壁内)	無					
5. 含水測定(CLT躯体等)	無					
6. エネルギー	消費量	無					
7. 主たる居室	の暖房方式		エアコン				
8. 主たる居室	の冷房方式		エアコン				
9. 給湯方式			ガス給湯器				
10. その他()					
2. 仕 様							
	÷n /4			断熱材 仕様		CI	LTの仕様
	部 位	断	熱材の種類	厚み	性能値	CLTの厚み	その他の仕様内容
屋根		グラ	スウール14K	150mm		180	
外壁	内壁	グラ	スウール14K	90mm		150	PB12.5 × 2+GW+PB12.5
外壁	外壁					150	モルタル+胴縁+硬質木片 ント板18mm+透湿シート
各界床	各界床		ラスウール64K	50mm		180	
最下階床			-	-		-	
開口部	窓		-	-	-		
ITI 나 마	ドア		-	-	-		
3. 指導を頂い							
高知工科大	田島先生						
4 母託重業件	: 及び 発注先						

4.3 まとめと今後の課題

4.3.1 まとめ

1)「4.1 断熱仕様の検討」

「建築物のエネルギー消費性能の向上に関する法律」(建築物省エネ法)の地域区分における住宅及び非住宅において基準適合となる CLT 工法の目安となる断熱仕様および住宅においてはさらに高い省エネレベル (HEAT20 G1) に対応できる断熱仕様の検討を行い、断熱材の種類による断熱厚さの目安を示した。(検討ケース表 4.0-9 参照) また、表面結露を起こさないための最低断熱性能についても検討を行い値を示した。

2)「4.2 CLT 建築物の温熱性能把握」

①真庭共同住宅

既存CLT建築物の一つである真庭共同住宅において、以下の3項目の測定および調査を行った。

・ 外皮温熱状況の確認

当該測定物件(内断熱、壁内ボルト接合方式)においては、断熱状況は良好であることが、確認できた。

・電力使用量の調査

世帯入居者、単身入居者ごとの、電力消費量が確認できた。

・住まい方アンケート調査

電力消費量と並行して、入居者の生活パターン、使用している暖冷房機器、および省エネ意識について把握できた。

②つくば実験棟の外皮性能

つくば実験棟においては、CLTパネルの接合方法として、パネルの両端にU字形引張金物が使用され、パネルを挟んで外気側と室内側を貫通することになる。従って、その影響を把握するため、計算による熱橋の検討を行い、それをふまえた断熱性能の検討を行った。熱橋の影響を踏まえて、H25 基準よりさらに高い断熱レベル(HEAT20 G1)にあることを確認把握した。

使用される金物は、外断熱で覆われるため、計算上、熱橋としての影響は大きくないこと が確認できた。

③つくば実験棟の結露センサー設置

竣工後、実建物の金物の結露発生の有無を確認する測定のため、結露センサー設置を行った。

④実物件の温熱測定内容および情報収集等

近年 CLT を用いた建造物が、全国各地で建設や提案・計画が進められている。これらの建造物は、用途・規模・接合方法等それぞれ異なっており、その多くは木造軸組等 他構法との複合構造となっている。本項では、CLT を構造体として用いた建造物 9 棟における温熱環境に関する測定内容 及び 断熱仕様について 情報を表 4.2.4-1~表 4.2.4-9 にまとめた。

9棟はCLTを主構造としているが、建設地、断熱材の材質・性能値、内断熱か外断熱か、 熱橋に影響する接合金物の仕様、居住者の有無 等、温熱環境の条件は異なっている。納 まり図や仕様書等、詳細を確認しないと比較検討する上で、注意する点は多々あるが、今後 収集される測定データは、CLTを用いた建設計画の参考となると考えられる。

4.3.2 今後の課題

CLT 構法は、まだ新しく、緊結方法等が定まっていない部分もあり、今回設置した結露センサー等による確認や性能向上、施工合理化等の目的で、今回の測定対象とは異なる新たな納まりが提案される可能性がある。今後も、新たな構成や納まりが提案される都度、温熱性能への影響を検討し、場合によってはその影響を含めた計算方法や断熱仕様を検討する必要がある。CLT 構法が、社会資産として長く有効であるために今後も確認検討が必要である。

4.3.3 設計施工時の留意点

実際に設計施工を行う場合の主な留意点を以下にまとめる。

- ・CLT 構法は、S 造、RC 造等に比較し、断熱性が高いが一定レベルの省エネルギー性能を 確保するためには、建設地域に応じた断熱材の設計が必要である。
- ・断熱材は、隙間なく施工することが必要である。
- ・内外を貫通する緊結金物が用いられる場合、その部分の断熱は特に丁寧に行う必要があ る。
- ・CLT 版、断熱材共に、施工時には極力雨濡れ等ないよう注意し濡れてしまった場合は、 よく乾燥させてから施工を進める。
- ・表面結露、内部結露の対策を含めて断熱材、防湿材等を適切に設計施工することが必要である。
- ・内部結露の観点からは、外側断熱工法が望ましい。
- ・外側断熱工法における内部結露対策として、「通気層の設置」および「防水層に透湿性の 高い透湿防水シート (JIS A6111) 等の使用」が望ましい。

5章 CLT(直交集成板)の住性能向上開発研究に関する展開・普及について

平成27年度林野庁委託事業「CLT等新たな製品・技術の開発・普及事業」の一つとして採用された本課題「CLT(直交集成板)の住性能向上開発研究」は住み心地にかかわるものである。CLTの出現による木質材料、木質構造建築物の新たな展開に関して、過去の木造建築物と大きく異なる点は低層の戸建木造住宅を中心とした課題ばかりでないところにある。集合住宅や福祉施設、事務所、学校など、用途の多様化に伴う要求性能や評価への対応が課題となる。構造性能や防耐火性能に加え、居住環境すなわち住み心地、使用にかかわることが重視されることが十分考えられる。上記した非住宅用途の建築物が今までコンクリートや鉄鋼系が多かっただけに、今後木材の特性を生かした競争や共存に新たな可能性を秘めている。そこに木材業界、県や国行政周辺の木材資源を基礎とした地方創生へのCLTの期待があるとおもわれる。

本事業ではCLTの遮音性能、歩行振動性能、断熱性能について仕様検討のうえ、CLT が有する特性を実験的に確認し、設計、施工などへの留意、使用上の評価にかかわる点を まとめた。各性能に関する実験及びその評価結果、課題について各章にまとめられている。 以下に本報告の住まい心地にかかわる3つの性能について CLT の今後の展開・課題について記しておきたい。

(1) 圧倒する木材の塊、ボリューム感

CLT (Cross Laminated Timber) は比較的厚い幅広板(厚さ 3cm 程度)を並べるか、横はぎして面状にしてものを直交に重ねて接着して、厚い面材(パネル状)にしたものである。このような大きさの板は壁、床などに対するシステムによってさまざまに展開ができる。CLT の最大の特徴は圧倒するような木材としてのボリューム感にある。使用する木材量、新たな需要に木材関係者は期待し、構造設計や設計に関わる人はこの厚く大きな板が設計、性能、施工面から新たな工法、用途の展開を期待しているので、住まい心地にかかわるボリュームを活かす試みが重要であろう。

(2) CLT が木材である特性とは

CLT(直交集成板)は木材の塊みたいなものであり、鉄筋コンクリート造やALC(気泡コンクリート版)などが主体であった建築物に利用展開されることが予想さる。木材は湿度変動に伴う膨張収縮に方向による差異(異方性)があるが、CLTは寸法変化に異方性が少なく、寸法の変化量が少ないことに大きな特徴がある。このようにCLTは面材と軸材をかねたような厚板の特性が構造性能はもとより防耐火性能の確保のために各種仕様が展開されるであろう。

その場合温熱環境、歩行振動、遮音性能は構造性能や防火性能を確保するための仕様を受けて対処せざるを得ない側面を有している。一方、温熱環境、歩行振動、遮音性能の評価については用途によっては優先項目になることもあり、人の行動や生理機能などきわめて多彩な要因と関係がある。そのため単純な結論は出しにくく、短絡的な評価の運用は個々の人々の健康や生活にかかわるだけに慎重でなければならない。これらの性能に関する計測データをもとにした設計や使い方への配慮が効果を発揮することが少なくないので、事例を積み重ねる必要がある。

(3) 事例、実態調査での追跡

今後 CLT を利用したいろいろな設計、用途が試みられると思われるので、現場における実測調査、使用環境における事例調査、実態調査を追跡、蓄積する必要がある。それがより実効性の高い評価と運用上の改良につながると思われる。例えば電気量の比較や個々の世帯の電気量などの月々の変化や住まい方の変化など、できる範囲の情報は重要である。とくに冬期のみならず夏期の省エネルギーについても今後重視されるであろう。木材は他の建築材料より密度が極めて低いので蓄熱量は小さい。それらは都市のヒートアイランド現象や冷房が切れたときのオフイスなどの部屋の温湿度上昇などから想像できるはずである。木造躯体とコンクリート躯体では石膏ボードで同じように被覆した内装であったとしても熱や湿分の吸放出はかなり違うことが考えられる。このような個々の事例の蓄積が実務への展開に有効と思われる。それは省エネルギーへの関心や住まい方や生活行動への自らの問いや意識に変化をもたらす可能性、すなわち大気中への二酸化炭素削減や資源の持続性といった対策の根源に関わる接点になるからである。

「CLT 住性能向上研究開発委員会」 委員長 有馬 孝禮